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Abstract

Data-driven models are becoming increasingly popular in engineering, on their
own or in combination with mechanistic models. Commonly, the trained models
are subsequently used in model-based optimization of design and/or operation of
processes. Thus, it is critical to ensure that data-driven models are not evaluated
outside their validity domain during process optimization. We propose a method
to learn this validity domain and encode it as constraints in process optimization.
We first perform a topological data analysis using persistent homology identifying
potential holes or separated clusters in the training data. In case clusters or holes
are identified, we train a one-class classifier, i.e., a one-class support vector machine,
on the training data domain and encode it as constraints in the subsequent process
optimization. Otherwise, we construct the convex hull of the data and encode it
as constraints. We finally perform deterministic global process optimization with
the data-driven models subject to their respective validity constraints. To ensure
computational tractability, we develop a reduced-space formulation for trained one-
class support vector machines and show that our formulation outperforms common
full-space formulations by a factor of over 3,000, making it a viable tool for engi-
neering applications. The method is ready-to-use and available open-source as part
of our MeLOn toolbox (https://git.rwth-aachen.de/avt.svt/public/MeLOn).

1 Introduction

Supervised machine-learning techniques have been re-emerging as a promising avenue for
data-driven modeling in various engineering disciplines (Venkatasubramanian, 2019). In
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most applications, the overall goal is the optimal decision-making based on available data
and a priori knowledge. Thus, data-driven models and mechanistic models are often com-
bined to form hybrid models (Mogk et al., 2002; Kahrs and Marquardt, 2008; Von Stosch
et al., 2014; Glassey and Von Stosch, 2018). Subsequently, hybrid models are frequently
used in model-based optimization of design and/or operation of processes (McBride and
Sundmacher, 2019; Schweidtmann and Mitsos, 2019).

A critical issue of data-driven models is their limited extrapolability. Unless strong
assumptions are posed on the learned function, data-driven models can only be valid
in regions where they have sufficiently dense coverage of training data points. We refer
to this as the validity domain (Courrieu, 1994). Consequently, there is a need to avoid
the evaluation of data-driven models outside their validity domain during optimization.
Note that we refer to the validity domain of individual data-driven models throughout
this work, but the concept can also be applied to hybrid models (Kahrs and Marquardt,
2007).

The vast majority of previous publications use box constraints (i.e., hyperrectangles)
to bound the inputs of data-driven models, i.e., each variable has independent bounds.
This approach is practical when the training data is obtained from simulations based on
regular grids or Latin hypercubes that are sufficiently dense. It is also advantageous for
local and global optimization. However, it requires a priori known bounds and the pos-
sibility to obtain training data for any input combination. In practice, simulations can
fail (Asprion, 2020) and industrial process data usually does not cover hyperrectangular
spaces (Asprion et al., 2019). This leads to manual selection of wrong bounds, which may
cut off optimal solutions or overestimate the validity domain.

As proposed by Courrieu (1994), a few previous works in process systems engineering
(PSE) constructed the convex hull of the training data points to describe the validity
domain and integrated it as a set of linear constraints in optimization problems (Kahrs
and Marquardt, 2007; Zhang et al., 2016; Asprion et al., 2019). By definition, the convex
hull is the smallest convex set that contains all data points. Commonly, evaluations of
data-driven models inside the convex hull of the training data are called interpolation
and outside extrapolation. However, roughly speaking, the convex hull cannot distin-
guish between for potential holes in the training data set, gaps between separated clusters
of data, and nonconvex boundaries. Thus, staying within the convex hull seems only a
necessary condition for the validity of data-driven models and not sufficient. Identifying
if the convex hull is a suitable model for the data domain is very challenging in high
dimensions. Notably, Zhang et al. (2016) extended the convex hull method to the union
of multiple polytopes by introducing binary variables and additional constraints to the
problem. However, this algorithm becomes impractical when the number of data points
or their dimension is very high. Besides convex hull formulations, there exist also several
publications that circumvent extrapolation problems en passant in different ways. For
instance, Mistry et al. (2018) penalize deviations from a training data mean in a space
that is parameterized using principal component analysis. Rall et al. (2019) constrain
the maximal allowed distance from the nearest training data point resulting in a nons-
mooth optimization problem. Kumar et al. (2019) train multiple data-driven models on a
design problem and reject designs where the variation between the models is large. Sim-
ilarly, Pinto et al. (2019) use bootstrap aggregation to estimate error bounds for hybrid
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mechanistic/data-driven models. There exist further methods that quantify the variance
or confidence interval of predictions such as Bayesian methods and maximum likelihood
estimations (Papadopoulos et al., 2001). However, this leads to chance-constrained pro-
gramming problems (Charnes and Cooper, 1959; Schweidtmann et al., 2020a). Likewise,
there are a few studies on the adaptive exploration of the design space (Larson and
Mattson, 2012; Chen et al., 2018; Knudde et al., 2019) and related works on constrained
Bayesian optimization (Shahriari et al., 2016). However, we focus on fixed training data
sets in this study while the extension of our method to adaptive sampling is a promising
future research.

An alternative to box constrains and convex hull is to use a nonlinear classifier that
can also model complicated validity domains. A few previous studies in mechanical en-
gineering (Malak and Paredis, 2010; Roach et al., 2011) used Support Vector Domain
Description (SVDD) (Tax and Duin, 1999) to model the validity domain of data-driven
equipment models. Also, Quaglio et al. (2018) use binary support vector classification
to include reliability constraints into model-based design of experiment. As only valid
training data points are given in most engineering applications, we consider one-class
classification in this work. There exists a broad variety of one-class classifiers that can
be divided into density methods, boundary methods, and reconstruction methods (Tax,
2001). Also, one-class classification is closely related to novelty, outlier, or anomaly de-
tection (Chandola et al., 2009; Pimentel et al., 2014; Khan and Madden, 2009, 2014; Ding
et al., 2014). The previous literature indicates that one-class support vector machines
(SVMs) (Schölkopf et al., 2000) are common and suitable for the problem at hand. Com-
pared to density models, less training data is required to construct the boundary, since
only the boundary is estimated and not a complete density distribution (Tax, 2001). In
addition, the one-class SVM is tolerant to outliers in the training set (Pimentel et al.,
2014).

Optimization problems with one-class SVMs embedded are nonconvex. Thus, de-
terministic global optimization is desirable to identify global solutions. However, these
models lead to large-scale optimization problems that are difficult to solve. In our previ-
ous work, we showed that a reduced-space (RS) formulation and the use of McCormick
relaxations are advantageous for the optimization of two other important classes of data-
driven models, namely artificial neural networks (Schweidtmann and Mitsos, 2019) and
Gaussian processes (Schweidtmann et al., 2020a). We propose a similar idea here for
one-class SVM.

The global shape of data matters because it often provides important information
about the underlying phenomena represented by the data. Especially in high-dimensional
data, topological data analysis (TDA) can reveal and quantify objects and features not
directly visible to the human eye. In the context of this work, it provides valuable in-
formation about typologies in the training data that can be colloquially thought of as
holes or separated clusters. TDA was initiated relatively recently (Letscher et al., 2002;
Zomorodian and Carlsson, 2005). Its roots lie in applied (algebraic) topology and com-
putational geometry (Chazal and Michel, 2017) and it is commonly used to account for
higher-order interactions in data, to comprehend mesoscale structures, or to compare dif-
ferent data spaces (Patania et al., 2017). The most common TDA method is persistent
homology (Wasserman, 2018). So far, there are only a few applications of persistent ho-
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mology in the fields of (bio-)chemical engineering and material science (Hiraoka et al.,
2016; Saadatfar et al., 2017; Xia, 2018; Xia et al., 2019; Smith et al., 2020).

We propose a three-step approach to model the validity domain of data-driven mod-
els for optimization. We first perform TDA using persistent homology. In case clusters
or holes are identified, we train a one-class SVM on the training data domain of the
data-driven models and encode it as constraints in the subsequent process optimization.
Otherwise, we construct the convex hull of the data and encode it as constraints. We fi-
nally perform deterministic global process optimization with the data-driven models and
their respective validity constraints. To ensure computational tractability, we develop a
RS formulation for trained one-class SVMs. Moreover, we employ convex and concave
envelopes of kernel functions to accelerate optimization. We demonstrate the potential
of our method on a set of illustrative mathematical case studies and an engineering case
study, i.e., the open-loop control of a sulfur recovery unit.

2 Methodology

As illustrated in Figure 1, we propose a three step approach to obey validity limits of
data-driven models during optimization. In the first step, we conduct a TDA of the
training data. In the second step, we either construct the convex hull of the data or we
train a one-class classifier, i.e., a SVM. In the third step, we embed the trained classifier or
convex hull in the optimization problem and solve it to global optimality. The described
methods are available open-source. We use the Ripser.py toolbox that is available open-
source under MIT license in Python for performing the TDA (Tralie et al., 2018). The
training of the one-class SVM is performed by Scikit-learn (Pedregosa et al., 2011) and
the convex hulls are identified using SciPy (Virtanen et al., 2020). We provide the one-
class SVM within the “MeLOn - Machine Learning Models for Optimization” toolbox
under the Eclipse public license (Schweidtmann et al., 2020b). The resulting optimization
problems are solved using our open-source global solver MAiNGO (Bongartz et al., 2018).

2.1 Topological data analysis using persistent homology

In persistent homology, we are interested in so-called topological invariants, i.e., prop-
erties that are invariant under homeomorphisms. The topological invariants of interest
are homology groups, i.e., Hk of dimension k, with βk “ dimpHkq being the Betti num-
bers (Binchi et al., 2014; Chung et al., 2015). “Informally, β0 is the number of connected
components, β1 is the number of two-dimensional holes or “handles” and β2 is the number
of three-dimensional holes or “voids” etc.” (Binchi et al., 2014).

The topological invariants are computed by representing the original dataset, i.e., a
point cloud, as a simplicial complex through a simplicial filtration. We utilize the common
Vietoris-Rips filtration, where a n-simplex in the simplicial complex is formed if and only
if the pairwise distance between all points in the n-simplex is at most ε. At the bottom
of Figure 2, we show a series of simplicial complexes for an illustrative point cloud.

Persistent homology studies topological invariants that persist over multiple length
scales (ε) in the data (Chambers and Letscher, 2018; Otter et al., 2017; Xia, 2018; Xia
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Figure 1: Overview of the proposed three step methodology to obey validity limits of
data-driven models in optimization

𝜖! 𝜖" 𝜖# 𝜖$

Figure 2: Illustration of a Vietoris-Rips filtration utilized for persistent homology. The
upper part shows the data set and circles around the data points with increasing diameter
ε. The bottom image illustrates the simplicial complexes formed during the filtration. The
figure is based on Kimura and Imai (2017)
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Figure 3: Persistent homology plot of the illustrative point cloud. The x-axis shows the
birth and the y-axis the death of the homology groups

et al., 2019). In other words, we examine the lifespan of topological invariants by increas-
ing ε incrementally and constructing simplicial complexes. At the bottom of Figure 2,
we can observe that β0 “ 10 connected components (H0) exist at ε1, β0 “ 5 connected
components exist at ε2, β0 “ 1 connected component and β1 “ 1 two-dimensional hole
(H1) exist at ε3, and β0 “ 1 connected component exist at ε4.

The results of the persistent homology can be depicted in barcode diagrams or persis-
tent diagrams. We use the more common persistent diagrams in this work. The coordi-
nates of birth and death of the homology groups in the example are shown in the persistent
diagram in Figure 3. The x-axis represents the εbirth while the y-axis the εdeath distance
of H0 and H1 homology groups. Features with long lifespan correspond to points far from
the diagonal (Wasserman, 2018). The blue triangle at the bottom left corner of the plot
corresponds to the merge of two very close data points at small ε. The blue triangles
with εdeath between 1 and 1.5 in Figure 3 resemble the merge of connected components
between ε2 and ε3 in Figure 2, describing the decrease in Betti number β0 from 5 to 1.
The highest blue triangle illustrates that one connected component exists until infinite.
The red circle represents homology group H1 and demonstrates the birth and death of
the two-dimensional hole which is formed around ε3 and dies before ε4 in Figure 2.

In this example, the persistent diagram shows that a hole exist providing useful in-
sight to guide the decision process for model selection. For example, the εdeath of the H1

components provide information about the data density. In the example, the maximal
distance in the last H1 component is at most 1.5. This is significantly smaller than the
εdeath of the H1 hole. In other words, the life span of the hole is characteristic for the
dataset.

2.2 Learn validity domain using one-class support vector ma-
chines

We model the validity domain using the convex hull or one-class SVM approach. The one-
class SVMs are trained using the open-source python implementation in Scikit-learn (Pe-
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dregosa et al., 2011) and the convex hulls are identified using the open-source implemen-
tation in SciPy (Virtanen et al., 2020). The details of the one-class SVM are described in
the following.

SVMs are a popular method for binary classification (Cortes and Vapnik, 1995) and
regression (Smola and Schölkopf, 2004). One-class SVMs are a modification of these clas-
sical SVMs (Schölkopf et al., 2000) (c.f. Tax (2001) on similarity to SVDD). The goal
is to learn a boundary of a given set of training points X “ tx̂p1q, ..., x̂piq, ..., x̂pNqu with
x̂piq P RD. Similar to classical SVMs, the data is mapped to high-dimensional feature
space by φ : RD ÞÑ Rd with d ąą D and later solved in the dual formulation using the
kernel trick (Schölkopf, 2001). In the feature space, a maximum-margin hyperplane is
found that separates the data from the origin by solving:

min
wPRd,ξiPR,ρPR

1

2
wTw ´ ρ`

1

νN

N
ÿ

i“1

ξi, (1)

s.t wTφpx̂piqq ě ρ´ ξi @i “ t1, .., i, ..Nu, (2)

ξi ě 0 @i “ t1, .., i, ..Nu, (3)

where ν P p0, 1q is a regularization hyperparameter, ξi P R are slack variables, and w and
ρ are the parameters of the hyperplane in high-dimensional feature space. Schölkopf et al.
(2000) show that ν is an upper bound on the fraction of outliers and a lower bound on
the fraction of support vectors in the training set, which is known as the ν-property. The
decision function fDF-Ppxq “ wTφpxq ´ ρ is positive if a candidate point x is classified
to be within the training data domain and negative if not. The dual of (1)-(3) is the
quadratic program:

min
αiPr0,

1
νN
s

1

2

N
ÿ

i“1

N
ÿ

j“1

αiαjKpx̂
piq, x̂pjqq, (4)

s.t
N
ÿ

i“1

αi “ 1, (5)

where αi are dual variables and Kp¨, ¨q is a kernel function. Often, the radial basis kernel
function Kpx,yq “ expp´γ}x ´ y}2q with hyperparameter γ is used since it has been
shown that it is best able to model the most complex boundaries (Tax, 2001). It holds
that αi “ 0 for training samples inside the learned boundary and αi ą 0 for samples on or
outside the boundaries. Samples for which αi ą 0 are called support vectors. The decision
function in the dual variables is given by fDF-Dpxq “

ř

iPIsv
αiKpx̂

piq,xq ´ ρ, where Isv
denotes the indexes of the support vectors in the training data (i.e., the data points with
corresponding αi ą 0). To obey validity limits of data-driven models in an optimization
problem, the following inequality has to hold:

fDF-Dpxq ě 0. (6)

The parameter ν can be estimated from an outlier fraction by using the aforementioned ν-
property. This makes this method more tolerant to outliers in the training data (Pimentel
et al., 2014). The hyperparameter γ controls the model complexity when using the radial
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basis kernel. If a large γ is used, all samples are mapped to a small region in the feature
space and the one-class SVM cannot distinguish between the samples well. In other
words, the model lacks complexity. If γ is small, pairs of samples become orthogonal
in the feature space. This leads to overfitting and a high number of support vectors.
A common approach to identify an appropriate γ is to gradually decrease γ until the
number of support vectors does not decrease much (e.g., Dreiseitl et al. (2010)). However,
automatically selecting an appropriate γ is challenging (e.g.,(Evangelista et al., 2007; Xiao
et al., 2014a,b)).

2.3 Optimization with classifier as constraint

We consider a global optimization problem where a classifier is used to obey validity limits
of a data-driven model. In most cases, the inputs of the classifier model correspond to the
degrees of freedom x of the optimization problem. The classifier can determine if a given x
is feasible or infeasible by evaluating its decision function fDF-Dp¨q. To obey validity limits,
Inequality (6) has to hold. Although the decision function is an explicit function, there
exist different ways to formulate it in optimization problems. These problem formulations
are equivalent as they have the same solution, but they can have a large impact on the
computational performance of global optimization.

In the FS formulation, a set of nonlinear equations is provided as equality constraints
while the dependent (or intermediate) variables are optimization variables. Note that
there exist multiple valid FS formulations depending on the equality constraints and
optimization variables provided to the solver. One representative FS formulation for
optimization with one-class SVMs embedded is shown in the following:

min
xPRD,zobjPR,diPR,kiPR,zddPRZ

zobj, (7)

s.t zobj “ fobjpx, zddq, (8)

hddpx, zddq “ 0, (9)
ÿ

iPIsv

αiki ě ρ, (10)

ki“ exp p´γ ¨ diq @i P Isv, (11)

di“ }x̂
piq
´ x}2 @i P Isv. (12)

Herein, Equation (7) minimizes the objective function value zobj that is given by Equa-
tion (8). Note that the objective depends on the variables of the data driven model zdd

that are given by the solution of Equations (9). The decision function of the one-class SVM
is given by the inequality constraint (10) while its intermediate variables are given by the
solution of Equations (11),(12). This FS formulation has in total D`2¨|Isv|`dimpzddq`1
optimization variables, 2 ¨ |Isv|`dimpzddq`1 equality constraints, and one inequality con-
straint.

The equality constraints of the one-class SVM can be solved explicitly for the inter-
mediate variables. Thus, we can directly formulate a RS formulation of the optimization
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problem (c.f. (Bongartz and Mitsos, 2017)):

min
xPRD

fRSpxq, (13)

s.t fDF-Dpxq ě 0. (14)

Herein, fRSp¨q is the RS formulation of the data-driven model and objective function.
Thus, Equation (13) results from sequential substitutions of Equations (7)-(9). This is
possible as most data-driven models such as ANNs or GPs are explicit functions (c.f.
Schweidtmann and Mitsos (2019); Schweidtmann et al. (2020a)) and as the objective
function is a function of the the degrees of freedom and the predictions of the data-driven
model. Similarly, Equation (14) results from the substitution of Equations (10)-(12). The
RS formulation has only D optimization variables and one inequality constraint.

The convex hull of a point cloud with a finite number of points can be formulated
as a set of linear inequality constraints XconvHull “ tx P RD | Ax ` b ď 0u. Assuming
that the convex hull has f facets, the matrix A P RfˆD and the vector b P Rf (Kahrs
and Marquardt, 2007). Thus, the FS and RS formulation of the convex hull are identical.
Note that the data-driven model can still be formulated in the RS and FS formulation
when using the linear convex hull constraints.

The RS formulation has three major advantages for global optimization: First, the
problem formulation has a direct influence on the variables to be branched on. In the RS,
the B&B solver branches only on the degrees of freedom x. In the FS, the B&B solver
branches on the degrees of freedom and also on the intermediate variables. This is un-
desirable given the exponential worst-case runtime of global optimization methods. Note
that this issue can also be mitigated by selective branching (Epperly and Pistikopoulos,
1997). Second, the size of the subproblems that are solved during optimization is affected
by the problem formulation and the method for constructing relaxations. Our previous
work shows that a combination of McCormick relaxations and RS formulation can re-
duce the time to solve an iteration of the B&B solver significantly (Schweidtmann et al.,
2020a; Bongartz, 2020). Third, global optimization solvers usually require bounds on all
optimization variables. Often, meaningful bounds are known for degrees of freedom but
bounds on intermediate variables can be difficult to determine. Note that this problem
is mitigated by some state-of-the-art solvers through automatic bound tightening tech-
niques.

The vast majority of previous literature approaches formulate global optimization in
the FS because they frequently use modeling environments such as GAMS that essentially
require an equation-oriented modeling approach. Recently, Hart et al. (2017) developed
the Python-based optimization tool Pyomo which allows modeling, implementation of
own solvers, and provides access to multiple solvers. Pyomo allows both FS and RS and
recently Hüllen et al. (2019) demonstrated RS optimization of ANNs in BARON through
Pyomo. However, BARON relies on the auxiliary variable method for relaxations which
results in larger subproblems (Schweidtmann et al., 2020a). Thus, a RS formulation in
BARON does not take full advantage of the RS formulation. In contrast, our open-source
solver MAiNGO (Bongartz et al., 2018) relies on McCormick relaxations in the space of
the original variables utilizing the library MC++ (Mitsos et al., 2009; Chachuat et al.,
2015). Another open-source solver that allows for McCormick relaxations is called EAGO
has been released by Wilhelm and Stuber (2020).
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The optimization problems in this work are implemented in MeLOn (Schweidtmann
et al., 2020b) and solved by MAiNGO (Bongartz et al., 2018). For comparison, the
problems are additionally exported to GAMS and solved by the commercial solver
BARON (Tawarmalani and Sahinidis, 2005). We provide the implementation of the one-
class SVM in the open-source modeling toolbox MeLOn (Schweidtmann et al., 2020b).

Tight convex and concave relaxations are highly desirable in global optimization.
Therefore, we use the tightest possible relaxations, i.e., the envelopes, of the radial basis
function kernel in our solver MAiNGO. Note that we derived these envelopes in our pre-
vious work (Schweidtmann et al., 2020a) as the squared exponential covariance function
in Gaussian processes is equivalent to the radial basis function kernel in SVMs.

3 Illustrative case studies

As high dimensional problems are difficult to visualize, we consider eight two-dimensional
data sets for illustration of the proposed method in a first step. Afterwards, we consider
an engineering case study in Section 4. As shown in Figure 5, the illustrative examples
cover a variety of relevant scenarios. All data points are randomly generated within
pre-specified bounds and perturbed by noise. Thus, the data sets do not exhibit sharp
boundaries, rather they also include noisy outlier data points.

In the next step, we evaluate an adapted peaks function, fPeaks : R2 ÞÑ R, on all
data sets with fPeakspx1, x2q “ 3p1 ´ x1q

2 ¨ exp p´x21 ´ px2 ` 1q2q ´ 10px1
5
´ x31 ´ x52q ¨

exp p´x21 ´ x
2
2q´

1
3
¨exp p´px1 ` 1q2 ´ x22q´1.3x2. Then, we train individual ANNs on the

eight data sets using Keras (Chollet et al., 2015). All ANNs exhibit one input layer with
2 neurons, two hidden layers with six and eight neurons, respectively, and an output layer
with one neuron. The hidden layers use tanh activation and the output layers use linear
activation. For training, the inputs are scaled onto r´1, 1s and the outputs are scaled to
zero mean and unit variance. We further use a batch size of 128 and an epoch limit of
4,000. Note that we omit a hyperparameter study for the ANNs because ANN training
is not the focus of this work.

All optimization problems are solved one core of an Intel Xeon CPU E5-2630 v3
(2.40GHz) with 192 GB RAM and Windows Server 2016 operating system. We use a
0.001 relative and absolute optimality tolerance, a CPU time limit of 1,000 seconds, and
default settings in BARON and MAiNGO.

3.1 Topological data analysis

The persistent diagrams of the eight input data sets are shown in Figure 4. The Subfig-
ures 4d and 4e show a H1 component with a large life span each. These correspond to
the holes in the respective data sets “box w/ hole” and “circle w/ hole”. Moreover, the
corresponding εdeath provide information about the diameter of the holes. Recall that H1

components that are close to the diagonal have a short life span and are therefore not
relevant for this analysis.

The persistent diagrams also show the existence of disjunct clusters in the data sets
“two circles” and “two ovals”. In Subfigures 4f and 4g, the H0 components with a high
εdeath indicate disjunct clusters and are a measure for the distance between them. Note
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Two Two Box Circle
Oval circles Box ovals Banana Box2 w/ hole w/ hole

0.31 0.28 0.25 0.35 0.25 0.25 0.23 0.25

Table 1: The values of the hyperparameter γ for the eight case studies. The hyperparam-
eters are selected based on the incremental approach described in Section 2.2.

that the H0 components at the infinity line persist when ε goes to infinity and do not die.
They correspond to the H0 components that include all data points.

The persistent diagrams show no distinct differences between the “box”, “oval”,
“box2”, and “banana” case studies. This illustrates that the method cannot distinguish
between convex and nonconvex data sets in general. Therefore, the persistent diagrams
cannot ensure that the convex hull is sufficient to describe the validity domain. Rather,
it can only identify some cases where the convex hull is not sufficient.

3.2 Validity domain modeling

In order to compare the one-class SVM and the convex hull, we model the input data of the
eight case studies with both methods. We employ the common radial basis function kernel
for the one-class SVM. We set the hyperparameter ν to a low value 0.03 because there are
only a few outliers through noise in the data. The hyperparameter γ is identified using
the incremental approach described in Section 2.2. The selected γ values are summarized
in Table 1.

The learned boundaries for the case studies are depicted in Figure 5. As expected,
the convex hull does not model holes and disjunct data clusters. Instead, the convex hull
overestimates the validity domain of the case studies. In contrast, the one-class SVM is
able to model holes and disjunct data clusters. Furthermore, the convex hull includes all
data points whereas the one-class SVM also allows for outliers in the data and excludes
regions with only small data density from the validity domain (e.g., see the “box” case
study).

3.3 Optimization results

We minimize the prediction of the eight trained ANNs subject to the the convex hull or
the one-class SVM as constraints. Table 2 shows the optimal solution points, x˚, and
objective function values, fANNpx

˚q, for the problem with convex hull and one-class SVM
as constraints.

The optimal objective function values of the convex hull approach are lower than the
ones with the one-class SVM for all case studies because the convex hull overestimates
the validity domain. This overestimation can lead to large errors at the optimal solution
points. For the “banana” case study, the optimal solution found by the convex hull ap-
proach is outside the validity domain but at the boundary of the convex hull (see Table 2).
This leads to a wrongly estimated objective values by the ANN of ´5.2 with an absolute
error of 8.52. In contrast, the one-class SVM models the validity domain accurately and
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(a) “Box” case study
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(b) “Oval” case study
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(c) “Box2” case study

0.0 0.5 1.0 1.5 2.0 2.5
Birth

0.0

0.5

1.0

1.5

2.0

2.5

De
at

h

H0
H1

(d) “Box w/ hole” case study
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(e) “Circle w/ hole” case study
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(f) “Two circles” case study
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(g) “Two ovals” case study
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(h) “Banana” case study

Figure 4: Comparison of the persistent homology plots of the eight illustrative data sets
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(a) Convex hulls of the eight illustrative data sets

4 2 0 2 4
4
3
2
1
0
1
2
3
4

Box

4 2 0 2 4
4
3
2
1
0
1
2
3
4

Oval

4 2 0 2 4
4
3
2
1
0
1
2
3
4

Box2

4 2 0 2 4
4
3
2
1
0
1
2
3
4

Box with hole

4 2 0 2 4
4
3
2
1
0
1
2
3
4

Circle with hole

4 2 0 2 4
4
3
2
1
0
1
2
3
4

Two circles

4 2 0 2 4
4
3
2
1
0
1
2
3
4

Two ovals

4 2 0 2 4
4
3
2
1
0
1
2
3
4

Banana

(b) One-class SVM boundaries of the eight illustrative data sets

Figure 5: Comparison of the convex hull and the boundaries learned by the one-class
SVMs
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Case Convex hull One-class SVM Reference
study x˚ f˚ANN ∆ x˚ f˚ANN ∆ x˚

Banana p0.1, 2.0q ´5.2 8.52 p0.3,´1.6q ´4.3 0.11 p0.2,´1.6q
Two circles p´1.5, 1.5q ´5.1 3.65 p1.0, 3.7q ´4.8 0.01 p1.3, 3.7q
Box p0.2,´1.9q ´5.4 2.14 p0.3,´1.5q ´4.5 0.07 p0.2,´1.5q
Box w/ hole p0.2, 3.6q ´6.4 1.65 p0.5, 3.2q ´4.8 0.70 p0.2,´1.6q
Circle w/ hole p´1.5, 3.5q ´5.0 0.41 p0.1, 3.6q ´4.6 0.02 p0.2, 3.6q
Two ovals p´1.3, 0.4q ´3.5 0.13 p´1.3, 0.4q ´3.5 0.13 p´1.3, 0.4q
Oval p1.3, 3.5q ´4.6 0.13 p0.2,´1.6q ´4.3 0.14 p0.2,´1.6q
Box2 p0.1,´1.7q ´4.2 0.05 p2.8, 2.9q ´3.8 0.05 p2.9, 2.9q

Table 2: The table compares the global optimal solutions with convex hull and one-class
SVMs (SVMs) as constraints. The optimal solution point is given by x˚ and the objective
function value is given by f˚ANN. Also, we provide the error of the data-driven model at
the optimal solution ∆ “ |f˚ANN ´ fPeakspx

˚q|. The reference solution point shows the
optimal solution when considering the underlying function fPeaks as the objective with
the one-class SVM constraint.

yields an optimal solution of ´4.3 with an absolute error of 0.11. Also, the solution point
found by the ANN model with the one-class SVM constraint is close to the reference
solution where the learned peaks function is optimized subject to the SVM constraint.
Similarly, the one-class SVM leads to more reliable results in the data sets “two circles”,
“box w/ holes”, and “circle w/ holes”. Interestingly, the convex hull approach also leads
to a substantial prediction error in the “box” case study while the one-class SVM models
the validity domain accurately. This highlights the risk of using the convex hull approach
in the presence of noise.

In Table 3, we provide the CPU times for optimization with one-class SVMs embed-
ded. Using the FS formulation, BARON and MAiNGO perform similarly and solve most
problems in the a few hundred CPU seconds. The RS formulation outperforms the FS
formulation on all problem instances. In BARON, the speedup factor between the RS
and the FS formulation ranges from 5 to over 14. In comparison, the the speedup fac-
tor between the RS and FS in MAiNGO ranges between 583 to over 3,226. This is in
agreement with our previous studies where the McCormick relaxations in the RS lead to
smaller subproblems compared to the auxiliary variable method (see Section 2.3).

In Table 4, we compare the computational performance for optimization with the
convex hull embedded. The CPU times with the convex hull are lower compared to the
ones with one-class SVMs. MAiNGO is substantially faster than BARON when formu-
lating the problem in the FS. On average, BARON requires about 83 seconds to solve the
problem in the FS while MAiNGO requires only 3 seconds. The RS formulation again out-
performs the FS formulation for all problems. However, in this case, the speedup factors
are in the same order of magnitude for BARON and MAiNGO ranging between 13 and
54. It should be noted that the RS and the FS formulation of the convex hull constrains
are identical. Therefore, the difference is only due to the formulation of the data-driven
model in the objective function, i.e., the ANN (c.f. (Schweidtmann and Mitsos, 2019)).
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Case # Sup. BARON MAiNGO
study vec. FS RS sp-f FS RS sp-f

Oval 48 158.2 s 35.0 s 5 197.2 s 0.20 s 986
Two circles 50 489.5 s 36.7 s 13 247.0 s 0.25 s 988
Box 52 346.6 s 25.8 s 13 139.9 s 0.24 s 583
Two ovals 58 341.3 s 38.6 s 9 433.2 s 0.22 s 1,969
Banana 62 1,000.0 s 70.6 s ą14 416.7 s 0.19 s 2,193
Box2 67 497.1 s 22.9 s 22 1,000.0 s 0.31 s ą3,226
Box w/ hole 81 1,000.0 s 73.1 s ą14 656.5 s 0.36 s 1,823
Circle w/ hole 103 1,000.0 s 75.8 s ą13 1,000.0 s 0.75 s ą1,333

Table 3: CPU times for optimization of the eight case studies with the one-class SVM
as a constraint. The table compares the FS and RS formulations for the BARON and
MAiNGO solvers. Here, the data-driven model (i.e., the ANN) and the one-class SVM
are formulated in the RS and FS. The speed up factor (sp-f) is given as the ratio between
the FS and the RS solution times. Also, the number of support vectors (# Sup. vec.) is
shown as a measure for the problem complexity.

4 Engineering application

We consider a sulfur recovery unit as a relevant engineering case study for our work
because a large data set of industry operating data is available online for this process.
The efficient recovery of sulfur in petroleum refineries from tail gas is important for
environmental reasons. The sulfur recovery unit process is illustrated in Figure 6. The
process has two acid gases as inputs: the MAE gas stream is rich in hydrogen sulphide
(H2S) and comes from the gas washing plants. The SWS gas stream is rich in H2S and
ammonia and comes from a sour water stripping plant. In the sulfur recovery unit, the
acid gases are burnt via partial reaction with air in a two-chamber reaction furnace. Then,
the combustion product is further treated in two subsequent catalytic reactors resulting
in a tail gas stream that contains residuals of H2S and sulfur dioxide (SO2). A detailed
process description can be found in the literature (Fortuna et al., 2007).

A key issue of the sulfur recovery unit is the control of the secondary air flow to
ensure optimal conditions for the total removal of the sulfur compounds in the catalytic
converters. Previous works have investigated soft sensors for the tail gas concentrations of
hydrogen sulphide (H2S) and sulfur dioxide (SO2) using ANNs and implemented those in
industry for monitoring (Quek et al., 2000; Fortuna et al., 2003, 2007). In this case study,
we solve an open-loop control problem to find the optimal secondary air flow rate. The
objective is to minimize |cH2S ´ 2 ¨ cSO2 | such that the two reactants are in stoichiometric
proportion. Similar to the previous literature by Fortuna et al. (2003, 2007), we also train
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Case # Sup. BARON MAiNGO
study vec. FS RS sp-f FS RS sp-f

Oval 48 74.9 s 2.8 s 27 2.7 s 0.05 s 54
Two circles 50 46.4 s 3.5 s 13 2.4 s 0.09 s 27
Box 52 85.8 s 1.5 s 57 1.7 s 0.06 s 28
Two ovals 58 103.9 s 3.1 s 34 3.8 s 0.08 s 48
Banana 62 136.4 s 5.1 s 27 3.0 s 0.09 s 33
Box2 67 32.3 s 2.3 s 14 2.7 s 0.11 s 25
Box w/ hole 81 51.3 s 3.5 s 15 2.4 s 0.08 s 30
Circle w/ hole 103 130.2 s 4.1 s 32 3.1 s 0.11 s 28

Table 4: CPU times for optimization of the eight case studies with the convex hull as
a constraint. The table compares the FS and RS formulations for the BARON and
MAiNGO solvers. The speed up factor (sp-f) is given as the ratio between the FS and
the RS solution times. Also, the number of support vectors (# Sup. vec.) is shown as a
measure for the problem complexity.

Figure 6: Flowchart of the sulfur recovery unit process
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Figure 7: Persistent diagram for of the training data of the engineering case study pre-
sented in Section 4

two ANNs to predict the concentrations:

cH2S,k “ fANN,H2S px1,k, x1,k´5, x1,k´7, x1,k´9, ...x5,k, x5,k´5, x5,k´7, x5,k´9q ,

cSO2,k “ fANN,SO2 px1,k, x1,k´5, x1,k´7, x1,k´9, ...x5,k, x5,k´5, x5,k´7, x5,k´9q ,

where x1,k is the gas flow in the MEA zone, x2,k is the air flow in the MEA zone, x3,k
is the secondary air flow in the MEA zone, x4,k is the air flow in the SWS zone, x5,k is
the gas flow in the SWS zone at time step k. The SO2 ANN has one hidden layer with
eight neurons and the H2S ANN has two hidden layers with eight neurons each. The
data-driven models are trained on (scaled) industrial data collected at a plant located
in Priolo, Italy available at https://www.openml.org/d/23515. The data set includes a
time series with approximately 10,000 data samples and we use the first 90% of the data
for training. The control variable of the NMPC is the secondary air flow x3,k while the
other inputs are observable parameters. As the control is critical for process safety, the
validity limits of the data-driven model should be considered.

In order to analyze the topology of the 20-dimensional input training data set of
ANNs, we perform persistent homology. Due to the large number of data points, the
exact computation of the persistent diagram is expensive. We apply approximate sparse
filtration instead (Cavanna et al., 2015). The persistent diagram for this case study is
shown in Figure 7. The diagram shows that there exist a number of holes in the data set
that persist over a long time span. Also, a separate cluster can be observed in the data.
This motivates the use of one-class SVM to obey validity limits of data-driven models.

As we have no physical model of the process available, the closed-loop performance
of the controller is not studied in this example. For illustration, we perform one step of
an open-loop controller for the secondary air flow x3,k. We select a random operating
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k k ´ 5 k ´ 7 k ´ 9

x1 0.627 0.6215 0.623 0.622
x2 0.770 0.769 0.754 0.769
x3 x3,k 0.174 0.192 0.198
x4 0.376 0.399 0.415 0.410
x5 0.513 0.512 0.511 0.504

Table 5: Operating point of the sulfur recovery unit that is considered for the NMPC
optimization step.

point from the historic plant data (Table 5) and let the solver determine the optimal
control action. The problem is solved to global optimality within 0.33 CPU seconds
and identifies a control action x3,k “ 0.266 that results in the desired stoichiometric
composition, i.e., |cH2S´2¨cSO2 | “ 1.3¨10´5. This engineering case study also demonstrates
the potential of the proposed method for NMPC. Note that deterministic global NMPC
can become computationally expensive for long control horizons and higher dimensional
control vectors (Chachuat et al., 2006; Doncevic et al., 2020; Kappatou et al., 2020).

5 Conclusion

Safety concerns and extrapolation issues often impede industrial applications of machine
learning models. We present a three-step approach to obey the validity limits of data-
driven models. First, we perform a data topology analysis using persistent homology.
Second, we model the validity domain of the data-driven model using either the convex
hull or a one-class SVM. Third, we perform deterministic global optimization with the
validity domain model as a constraint.

All used and developed methods are available open-source. Also, we currently develop
a Python interface for our solver MAiNGO. Thus, all methods can be applied and further
developed in academia and industry for free.

Our method has the potential to enhance safety, trust, and reliability of machine
learning approaches. Moreover, we demonstrate that persistent homology is a valuable
method for understanding the topology of data in high dimensional spaces. Besides in-
dustry applications, promising future work also includes the application to optimization
problems occurring in molecular design where molecules are parameterized through graph
neural networks (Schweidtmann et al., 2020c) or autoencoders (Jin et al., 2018). Also,
time-dependent design space descriptions are desired in pharmaceutics (von Stosch et al.,
2020). The proposed method can also be extended by considering and comparing other
one-class classification methods.
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Deterministic global nonlinear model predictive control with recurrent neural networks
embedded. In Press: IFAC Conference Proceedings
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