001     888848
005     20240712112852.0
024 7 _ |a 10.1002/aic.17010
|2 doi
024 7 _ |a 0001-1541
|2 ISSN
024 7 _ |a 1547-5905
|2 ISSN
024 7 _ |a 2128/26531
|2 Handle
024 7 _ |a WOS:000563951800001
|2 WOS
037 _ _ |a FZJ-2020-05262
082 _ _ |a 660
100 1 _ |a Schäfer, Pascal
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Do investments in flexibility enhance sustainability? A simulative study considering the German electricity sector
260 _ _ |a Hoboken, NJ
|c 2020
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607966256_17108
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Current research concerning industrial demand side management primarily focuses on monetary aspects. Herein, we extend this perspective by assessing whether economically driven measures increasing the flexibility also result in reduced contributions to the residual load. For this purpose, we conduct a simulative study using historic and projected time series for the German electricity sector. First, Fourier analysis are performed to show that the main oscillation in the electricity price time series has a period length of 12 hr, whereas the renewable generation is primarily characterized by an oscillation with a period length of 24 hr. Second, a generic process model with capabilities for load shiftings is used to evaluate how the fluctuation patterns can be exploited via scheduling optimizations. Most importantly, our results demonstrate that prevalent price fluctuations prevent adequate monetary incentives for providing storage capacities for bridging up to 24 hr, which are desired for reducing the residual load.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Daun, Torben M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 2
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/aic.17010
|g Vol. 66, no. 11
|0 PERI:(DE-600)2020333-0
|n 11
|p e17010
|t AIChE journal
|v 66
|y 2020
|x 1547-5905
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888848/files/Schaefer2020_AIChE_DSM-MO.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888848/files/aic.17010.pdf
909 C O |o oai:juser.fz-juelich.de:888848
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AICHE J : 2018
|d 2020-08-29
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21