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Introduction1

In order to reduce the greenhouse gas emissions of the electricity sector, in many industrial nations,2

conventional power plants are steadily substituted by a generation from renewable sources. For instance,3

in the first six months of 2019, almost half of the net electricity generation in Germany originated from4

renewable sources - mostly wind and solar1. However, the electricity generation by wind farms and5

photovoltaics is characterized by a strong volatile nature, thus representing a severe challenge for the6

energy system. In order to address this challenge, flexibility measures are required addressing both the7

supply and the demand side2–5. In this context, process and energy systems engineering can contribute by8

providing a systematic decision support between alternatives6. Considering the storage of surplus energy9

or the production of e-fuels, extensive studies have therefore been carried out to quantify environmental10

impacts and identify the most sustainable of various technological alternatives7–10.11

In contrast, when considering the industrial load flexibility, referred to as industrial demand side12

management (DSM), the research focus shifts to an almost exclusively economic perspective, mostly13

addressing monetary entrepreneurial benefits from an active electricity market participation11. As the14

provision of industrial flexibility is in an inherent conflict with utilization rates12, industrial DSM is15

then interpreted as an enterprise-wide optimization problem13,14. Using mathematical programming,16

potential economic benefits from DSM have been identified for important energy-intense processes. Here,17

the majority of works focuses on air separation as application case15–24. However, other processes are18

well-investigated as well, such as chlor-alkali electrolysis25–30, electric arc steelmaking31–34, aluminum19

electrolysis35,36, cement17,37, seawater desalination38–40 and pulp41.20

First few approaches exist assessing the environmental impacts of DSM activities in response to price21

signals, mostly focusing on specific processes. Finn and Fitzpatrick consider, e.g., different industrial22

consumers in Ireland and find a positive correlation between cost savings and wind power consump-23

tion42. Going one step further, hourly changing electricity mixes also offer an optimization potential for24

the schedule, such as minimizing the greenhouse gas emissions that are associated with the generation25

of the purchased electricity43. Focusing on a cement plant in the UK, Summerbell et al. compare pro-26

duction schedules optimized for electricity costs and CO2 emissions, finding synergetic effects (i.e., an27

optimization for cost savings also reduces the CO2 emissions and vice versa)44. Likewise, Kelley et al.28

consider scheduling alternatives for air separation units using data for California in 201745. Therein, the29

authors also find mostly synergetic effects. However in specific periods, the environmentally optimized30

schedules lead to increased costs compared to the reference case. Trade-offs like these are accounted for31

by Baumgärtner et al., who present Pareto curves for the design of a utility system considering total32

annualized costs and global warming impacts as objectives46.33

However, there is still a significant research gap concerning a systematic bi-objective assessment of34

measures increasing the flexibility potential on the demand side. In particular, this includes the question35
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if economically-driven measures, i.e., measures that enhance the exploitation of fluctuating electricity1

prices, promote the penetration of renewables by allowing to consume electricity primarily in periods with2

a high renewable share. We address this gap by assessing if the current pricing at the electricity markets3

sets incentives for investments in increased flexibility that are suitable for reducing the environmental4

impacts of the electricity consumption, which we measure by the contribution to the integral residual5

load. In our computational study, we focus on the German electricity sector as a prototype of a system6

characterized by a high share of intermittent renewable electricity generation. The study uses both7

historic electricity time series data from 2017 as well as publicly available projected time series data8

for 203047. In a first step, we conduct a quantitative characterization of the time-variable input data9

sets using frequency and correlation analysis. Afterwards, we investigate the effects of the different10

characteristics of the time series on process scheduling. For this purpose, we perform single- and bi-11

objective optimizations of the production schedule with regard to both electricity costs and residual12

load contribution using a generic process model. In this model, we introduce a general formulation for13

DSM activities allowing for load shiftings, including temporary shut-downs. Furthermore, we investigate14

numerous parametrizations of the generic process model considering varying average utilization rates,15

storage capacities, ramping limits, and off-design efficiency losses. Thereby, we cover the vast majority of16

DSM-relevant processes, which allows for generalizable conclusions not limited to a specific application.17

Finally, by analyzing the results of the scheduling optimizations, we systematically identify measures18

increasing the flexibility potential, which are driven by the economic perspective and those driven by the19

environmental perspective, and discuss potential contradictions.20

The remainder of this article is structured as follows: first, we introduce and discuss the data basis21

for assessing the potential economic and environmental benefits from DSM. Afterwards, we present22

the generic process model with the considered DSM activities. In the subsequent section, we give a23

quantitative analysis of the time-variable input series. The results of the numerical optimization studies24

are presented thereafter. Finally, conclusion are drawn, emphasizing the need for modifications in the25

electricity market.26

Scheduling objectives27

Nowadays, the German electricity market as well as many others is characterized by a time-variable28

electricity supply satisfying a (mostly) inelastic electricity demand. This induces time-variable fluctua-29

tions in both the electricity mix and the electricity price due to different operating costs of the power30

generation technologies. These fluctuations can be exploited by optimizing the electricity consumption31

accordingly. In this section, we introduce two objective functions for the optimization - one for the32

economic perspective and one for the environmental one - and briefly discuss their interrelation.33
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Economic perspective1

From an entrepreneurial perspective, the primary objective of DSM is to minimize the costs for electricity2

purchase by preferably consuming electricity in hours with low prices whilst respecting all requirements,3

e.g., obeying operating limits, satisfying demands, etc. We herein focus on hourly changing spot prices at4

the day-ahead market due to its large trading volumes, although recent studies identify larger economic5

benefits if participating in real-time markets, as more distinct price peaks occur there48,49. For ease of6

presentation, we herein assume that the entire electricity is purchased at the day-ahead spot market.7

The economic objective for optimization thus equals the total electricity costs C “
ř

t ct ¨ Pt, with ct8

denoting the instantaneous spot market price in hour t and Pt the power consumption.9

The German day-ahead market applies a uniform pricing, i.e., the market clearing price in each hour10

is determined by the intersection of the supply and the demand curve. Assuming a perfectly competitive11

market, the supply curve is the aggregated marginal cost curve of all power suppliers. Consequently,12

for given hourly demand curves and a given pool of suppliers with known marginal costs, the so-called13

marginal power plant would then solely determine the spot electricity price ct
50. Therefore, in periods14

with a high share of renewable electricity generation, which is associated with negligible marginal cost15

(and in Germany also feed-in support), spot prices are low51.16

Environmental perspective17

The described price setting procedure essentially leads to time-variable electricity mixes depending on18

the instantaneous electricity demand and the realized generation from intermittent renewable sources.19

Consequently, there is an analogous environmental optimization opportunity by preferably consuming20

electricity in those hours where the electricity generation is associated with low environmental impacts.21

In the previous literature referred to in the introduction, the environmental objective has mostly been22

quantified by accounting for different impacts of the individual electricity generation technologies on23

climate change, targeting the exploitation of time-variable carbon footprints for the electricity consump-24

tion.25

As an alternative, we herein measure whether electricity is primarily consumed in hours with a high26

renewable generation by introducing the hourly residual load share rt, which is the quotient of the in-27

stantaneous residual load and the network-wide electricity consumption. Thus, rt gives the percentage of28

the entire network-wide electricity consumption that needs to be satisfied by a non-renewable generation.29

Note that rt ď 1 thus holds and that rt ă 0 is also possible, indicating hours with a surplus of renewable30

energy, which should certainly be preferred. A suitable environmental objective then reads R “
ř

t rt ¨Pt31

if assuming that the purchased electricity has the same mix as traded at the market, giving the individual32

contribution to the integral residual load, i.e., the part of the total individual electricity consumption33

that needs to be satisfied by a non-renewable generation.34
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We emphasize that the proposed environmental objective is not meant for a detailed life cycle analysis1

but should rather provide a tangible measure for the reduction in the consumption of fossil-produced2

electricity in favor of renewable electricity with a compact mathematical form comparable to that of the3

economic one. Moreover, using this measure omits an existing optimization potential between different4

fossil energy sources, which we do not intend to address in this study. In particular, we thereby prevent5

favoring periods with a high share of generation from gas-fired plants, which on the one hand involve6

less emissions than coal-fired plants, but on the other hand commonly only contribute to the electricity7

mix in periods with a very low renewable generation due to their high operating costs.8

Data basis9

We consider yearly time series for both ct and rt, i.e., t P t1, . . . , T “ 8760u and investigate both the10

current and a projected future scenario for the German electricity sector. The first data set contains11

historic time series from 2017 and is provided by Agora Energiewende (www.agora-energiewende.de/).12

The 2030 data set is provided by Forschungsgesellschaft für Energiewende (www.ffegmbh.de/) and has13

been obtained in the project MONA 203047 by system simulations assuming a continued increase in14

installed renewable electricity generation capacities by „70% compared to 2015. All used time series15

data is provided in the Supplementary Material.16

Generic process model17

To evaluate the benefits from DSM, we consider a generic process that is able to vary its electricity18

consumption and store products. Processes like these act as virtual batteries, i.e., load increases act19

similarly to charging and load reductions to discharging a battery storage from the perspective of the20

electricity grid52,53. We remark however that these virtual batteries can obviously not have net feeding21

into the grid at any point in time. Moreover, we require that all load reductions have to be caught22

up, i.e., we confine to load shiftings and not allow for load shedding, etc. (cf. the classification by23

Gellings54). Depending on the considered process, the ability to shift loads is however limited by different24

constraints. To allow for a systematic treatment, we first introduce an idealized base case, referred to as25

ideal storage-type customer, and discuss ranges for the process parameters. Afterwards, we present two26

extensions to account for off-design efficiency losses and enable temporary shut-downs of the process.27

Model equations are only briefly covered herein, instead the focus is set on the underlying assumptions.28

Actual mathematical formulations have been extensively discussed in the relevant literature.29
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Ideal storage-type customer1

The mathematical model of the ideal storage-type customer, which we consider as a base case, is given2

in the early work of Daryanian et al.55 and describes an idealized process with flexible power uptake and3

opportunities for product storage. Essentially, the model relies on two assumptions:4

(a) The production rate is proportional to the power consumption irrespective of the operating point.5

Note that in the battery analogy, this assumption leads to an ideal behavior in a sense that neither6

charging nor discharging is associated with any losses.7

(b) The total production of the process must remain constant, equaling that of a constant operation8

at the nominal production rate.9

The ability of the process to shift loads is further limited by (i) its operating range, (ii) its storage10

capacities, and (iii) ramping constraints.11

Plant capacity and average utilization rate12

The power consumption of the considered process is limited by lower and upper bounds. Beside the13

size of the flexibility range, the average utilization rate UR [%], giving the ratio between the nominal14

and the maximum power consumption, is of crucial importance. Note that energy-intense processes15

are commonly sized for UR « 1 to minimize capital costs. This represents a main hindrance for load16

shiftings56, as missed production can hardly be caught up. For instance, for the chlor-alkali capacities in17

Germany, an average utilization rate of ą90% is found, limiting the potential of DSM57. Thus, we herein18

consider a process with a representative average utilization rate UR “ 95% and a flexibility range of19

50-100%, but investigate benefits from oversizing facilities, i.e., reducing average utilization rates. In the20

simulative study, we consider oversizings by up to 20%, i.e., average utilization rates UR “ 79 . . . 95%.21

Obviously, oversizing of production facilities is usually in conflict with total annualized costs, requiring22

integrated optimizations in practice29.23

Storage capacities24

To account for storage opportunities, the process model considers a simple buffer tank which is filled25

by the instantaneous production and continuously emptied by the nominal production, which can be26

interpreted as a constant demand that needs to met. Note that several real processes are indeed charac-27

terized by seasonal fluctuations in the demand that might interact with the provision of load flexibility.28

The consideration of such aspects is however beyond the scope of this manuscript. The stored amount29

increases in case of overproduction and decreases in case of underproduction. We do not consider losses30

during storage. The stored amount is limited between zero and a maximum storage capacity. In order31

to avoid emptying the tank throughout the year, we force both the initial and the final tank level to32
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50%. Moreover, we allow for a systematic comparison between processes of different scales by using the1

time, up to which the production rate at the design operating point can be maintained with a completely2

filled storage tank, as a measure for the storage capacity, denoted by Smax [h]. In the parameter studies,3

we consider a wide range of storage capacities between Smax “ 3 . . . 48 h. Note that in contrast to an4

oversizing of the actual production facilities, a retrofit of storage capacities is possible in many settings18.5

Ramping limits6

Finally, the flexibility of a process can be limited by imposing a maximum change between two succes-7

sive operating points. In particular, such ramping constraints are required to ensure that transitions8

between two operating points can be realized without violating requirements58. Ramping constraints9

are commonly modeled using a set of linear equations59. As we again target the comparability between10

processes of different scales, we herein impose a maximum on the change in utilization rates between11

consecutive hours, denoted by ∆max [%/h]. In the parameter studies, we investigate the influence of12

different ramping constraints by considering ∆max “ 5 . . . 25%/h. Note that whereas adjustments of the13

average utilization rate by oversizing as well as of the storage capacities usually involve the installation14

of additional equipment, ramping constraints can be affected by changes in the operating philosophy60
15

beside modifications in the process design61.16

Off-design efficiency losses17

The assumption of a linear production characteristic made above assuming constant efficiencies might18

in some cases be a poor approximation of the reality. Instead, efficiency losses in case of off-design19

operation occur and have to be accounted for when assessing the potential of DSM57. In order to enable20

a systematic treatment, we introduce the following assumptions, leading to an extended storage-type21

customer model that can account for efficiency characteristics.22

(a) The electric efficiency, i.e., the ratio between the production rate and the power consumption, is a23

function of the instantaneous utilization rate.24

(b) The highest electric efficiency is reached at the design operating point.25

(c) To account for off-design efficiency losses, we use a quadratic approximation of the generally non-26

linear function, leading to a cubic function for calculating the production rate from the power27

consumption.28

Following assumptions (b) and (c), the entire characteristic is defined by one parameter, denoted ζ [%],29

giving the relative loss in electric efficiency at the lowest utilization rate (50%) compared to the electric30

efficiency at nominal operation. Considering the large variety of processes in the DSM-relevant literature,31
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we evaluate a range of potential parameters ζ “ 0 . . . 33%. Using the battery analogy, we thereby1

account for losses during charging and discharging. Moreover, we highlight that under the aforementioned2

assumptions, the constraint on satisfying the integral production target involves that any load shifting,3

i.e., any temporary off-design operation, increases the total electricity consumption.4

In order to enable the use of efficient mixed-integer linear programming (MILP) solvers, the cubic5

relation for calculating the production rate is approximated using a piecewise-linear continuous approx-6

imation. More precisely, we apply linear segmentation62 using six intervals with individual slopes and7

intercepts. Interval bounds are found by minimizing the error between the cubic function and the piece-8

wise linearization.9

Shut-downs10

In order to circumvent price peaks, it can be beneficial to shut down the entire process for a certain11

period. Herein, we focus on shut-downs that allow for fast warm-starts after a limited down-time. For12

modeling these opportunities, we make use of the following assumptions:13

(a) During the down-time, no product is produced and negligible electricity is consumed.14

(b) Shut-downs are only possible if the process is operated at its lower operating bound. Thereby, we15

prohibit abrupt shut-downs from high utilization rates that might stress the equipment dispropor-16

tionately.17

(c) Warm-starts, i.e., start-ups after down-times, are only possible within a specified period.18

Herein, we also study the influence of a varying maximum down-time, denoted by τmax [h], on the19

different objective functions. To capture the highly different characteristics of the numerous DSM-20

relevant processes, we apply τmax “ 0 . . . 12 h.21

Modeling of shut-downs relies on the introduction of binary variables indicating operating modes and22

transitions59,63,64. Constraints on the maximum down-time can then be established using a set of linear23

inequalities17,65. Note that modeling the opportunities for shut-downs under the given assumptions24

further involves an adjustment of the ramping constraints introduced above, which can be found in the25

literature28.26

Implementation and numerical optimization27

We implement the scheduling optimization problem applying the generic process model described above in28

GAMS version 26.1.0 (GAMS Development Corp.). Therein, we use an hourly discretization and consider29

the entire year. Moreover, we consider a constant product demand that corresponds to an average30

utilization rate of 95% for the non-oversized process. GAMS implementations of the three versions of the31
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Table 1: Quantitative descriptors for the four time series. All value are normalized to the mean.

Electricity price [-] Residual load share [-]
2017 2030 2017 2030

Mean 1.00 1.00 1.00 1.00
Minimum -2.43 0.00 0.19 -2.03
Maximum 4.78 2.68 1.46 2.37
Standard deviation 0.52 0.35 0.24 0.86

generic process model ((i) ideal storage-type customer, (ii) extended storage type customer accounting1

for efficiency losses, and (iii) ideal storage-type customer with shut-down opportunities) can be found2

in the Supplementary Material. The resulting (MI)LPs are solved using CPLEX version 12.8 (IBM3

Corp.). Default solver settings are applied. Pareto curves when conducting bi-objective optimizations4

are identified using an ǫ-constraint method, furnishing 15 equidistant Pareto optima.5

Analysis of the time series6

The input time series for evaluating the considered objective functions, i.e., the series of electricity7

prices and residual load shares, show different characteristics as will be explained in the following. The8

results presented in this section allow for qualitatively anticipating the observations we make during the9

scheduling optimizations and facilitate the interpretation thereof in the next section.10

Quantitative characterization11

Table 1 gives quantitative descriptors for all considered time series. All values are normalized to the12

respective means to make the series comparable. As we confine to the discussion of relative improvements13

through DSM activities in the remainder of the manuscript by comparing to a constant production, i.e.,14

with averaged input data, the normalization appears reasonable for interpreting the results. As can be15

seen, electricity prices in the historic 2017 time series show a very broad distribution compared to the16

residual load shares, as measured by both the range and the standard deviation. Consequently, higher17

relative optimization potentials from the economic perspective are expected compared to the environ-18

mental one. Comparing the 2017 to the 2030 time series, one finds that the distribution of electricity19

prices becomes narrower, whereas the distribution of residual load shares becomes broader with even20

a larger range and standard deviation than the prices. Consequently, identified relative economic opti-21

mization potentials are expected to decrease, whereas environmental ones are expected to increase. The22

latter conclusion can be explained by an increasing penetration of electricity generation from intermit-23

tent renewable sources assumed for 2030. From this perspective, the narrowing of the distribution of24

electricity prices seems counter-intuitive. However, we presume that this observation stems from the25
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Figure 1: Scatter plots for both the historic and the projected time series.

assumptions behind the time series simulation for 2030. More precisely, projected prices are bounded1

by the minimal (zero without feed-in support) and maximal marginal cost of the power plant fleet when2

assuming a perfectly competitive market. Possible market behavior going beyond this assumption, which3

is apparently present in 2017 and causes more distinct price peaks and troughs, is not included in the4

2030 price series. Besides, we emphasize that absolute price spreads in 2030 are still higher than in 2017.5

Correlation analysis6

Considering bi-objective optimizations, i.e., trade-offs in simultaneous fulfilling both objectives, the cor-7

relation between the time series of electricity prices and residual load shares is crucial. Thus, in Figure 1,8

we show scatter plots containing the pairs pct, rtq for every hour in 2017 and 2030 respectively. In both9

cases, an S-curve can be observed indicating a positive correlation. The intensity of the correlation can10

be quantitatively assessed using correlation coefficients. Here, the use of Spearman’s rank coefficient ρ11

is highly informative, as it represents a measure for the monotonicity of a correlation. More precisely,12

if one finds a strictly monotone function (represented by ρ “ 1), the bi-objective perspective on DSM13

would be redundant, i.e., the Pareto curve would become a point. For the 2017 time series, we find14

ρ “ 0.64, whereas for 2030, we find ρ “ 0.76. Thus, for both 2017 and 2030 monotone trends can be15

observed. However, there is also a potential for balancing trade-offs between the two objectives, which16

we expect to become particularly important in the presence of efficiency losses.17

Frequency analysis18

Further details concerning fluctuation patterns in the considered time series can be gained by frequency19

analysis. For this purpose, we conduct discrete Fourier transforms. The resulting spectra are depicted in20

Figure 2. Our analysis focuses on fluctuations on an hourly-to-daily scale, which is typically considered21
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Figure 2: Frequency spectra of the fluctuation patterns of the considered normalized time series obtained
by discrete Fourier transform.

in DSM due to, in general, limited storage capacities. Note that the lower frequencies are nevertheless1

of interest for different technologies addressing, e.g., seasonal storage66.2

Confining to the DSM-relevant frequency components, one finds the most important frequency com-3

ponents at 1
24

h´1 and 1
12

h´1. In other words, all time series are characterized by the superposition of4

two sine waves, one with period length of one day (day-night fluctuations) and one with period length5

of half a day (intra-day fluctuations). Noticeably and independently from the considered year, in case of6

the residual load share, the day-night fluctuation is more distinct, leading to a temporal course with typ-7

ically one local minimum per day, which matches the peak in generation from photovoltaics at noon. In8

contrast, in case of the electricity price, the intra-day fluctuation is more distinct, which leads to typically9

two local maxima a day, that occur around 8:00 am and 8:00 pm respectively. This two-peak-behavior10

directly follows from the market clearing procedure itself, considering that the peak in generation from11

photovoltaics at noon is superimposed with a daily flat plateau in the network-wide electricity consump-12

tion between 8:00 am and 8:00 pm. That is, at the beginning and the end of this plateau, a high demand13

meets a comparably low supply from photovoltaics. In contrast, at the center of the plateau, i.e., at14

noon, there is much more supply from photovoltaics at low marginal costs and thus less conventional15

electricity generation at higher marginal costs is required to meet the demand, involving temporary daily16
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price troughs. We again highlight that the different fluctuation patterns can be observed irrespective1

of the considered year, indicating that these are not caused by imperfect market behavior. Moreover,2

we observe that components with frequencies above 1
6
h´1 . . . 1

4
h´1 show a larger contribution to the3

spectra of the electricity prices than to the spectra of the residual load shares. This corresponds to the4

existence of very short-term price spreads, whereas there are no spreads to be exploited on a similar scale5

with regard to a reduction of the contribution to the residual load. Together, these findings represent6

an indication that some measures increasing the flexibility potential might influence the economic and7

the environmental objective in a different manner. In particular, whereas the exploitation of day-night8

fluctuations is possible even for processes with limited capabilities for load changes, the exploitation of9

short-term spreads certainly requires a high plant agility, i.e., loose ramping constraints. Consequently,10

we expect mostly economic and almost no environmental incentives for loosening ramping constraints.11

Finally, we note that Figure 2 also illustrates the trend of increasing fluctuations of the residual load12

shares and decreasing relative fluctuations of prices in the projected time series.13

Scheduling optimizations using the generic process model14

In this section, we evaluate to what extent different measures increasing the flexibility potential can15

enhance the exploitation of the above described characteristics of the input time series. Optimization16

results are herein discussed in detail for the historic time series from 2017. Afterwards, a brief presentation17

of the key insights from using the projected time series for 2030 is given. Note that throughout this18

section, all objective values are relative to a stationary operation for comparison purpose.19

Effect of average utilization rates on Pareto curves20

First, we analyze the impact of different average utilization rates on bi-objective optimizations by varying21

the oversizing of the process, i.e., by decreasing the average utilization rate below its reference value22

UR “ 95% when considering the ideal storage-type customer model described above. Furthermore, we23

also identify an optimized average utilization rate by treating it as an additional optimization variable.24

Pareto curves given in Figure 3 correspond to different process variants, spanning a range for various25

storage capacities Smax and ramping limits ∆max.26

• P1 - a variant with a low storage capacity Smax “ 3 h and a limited load shifting capability due27

to severe ramping limits ∆max “ 5%/h. Consequently, the flexibility potential of this variant is28

expected to be substantially restricted.29

• P2 - a variant with a low storage capacity Smax “ 3 h, but strongly loosened ramping limits30

∆max “ 25%/h. Compared to P1, the flexibility potential of the variant is higher.31
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(b) P2: 3 h storage capacity
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(c) P3: 48 h storage capacity
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(d) P4: 48 h storage capacity

25%/h ramping limit

Figure 3: Pareto curves for different parametrizations of the ideal storage-type customer model. The solid
black curve is the reference with an average utilization rate UR “ 95%. The dashed curve corresponds to
10% oversizing compared to the reference (i.e., UR “ 86%), the dashed-dotted curve to 20% (i.e., UR “
79%). The red solid line depicts the Pareto curve for an optimal average utilization rate. Thin dotted lines
are depicted for orientation. The intersection of dotted black lines corresponds to a stationary operation,
the intersection of dotted red lines gives the utopia point of the red Pareto curve. Used parametrizations
are: (a) Smax “ 3 h and ∆max “ 5%, (b) Smax “ 3 h and ∆max “ 25%/h, (c) Smax “ 48 h and
∆max “ 5%/h, and (d) Smax “ 48 h and ∆max “ 25%/h.

• P3 - a variant with a limited load shifting capability due to severe ramping limits ∆max “ 5%/h,1

but with a significantly increased storage capacity Smax “ 48 h. Again, there is a higher flexibility2

potential than for P1. Note that a comparison with P2 is not intended here.3

• P4 - a variant with both an increased storage capacity Smax “ 48 h and loosened ramping limits4

∆max “ 25%/h, hence exhibiting the largest flexibility potential of all variants.5

Figure 3 confirms the anticipated larger saving potentials in the economic objective compared to the6

environmental one (cf. Table 1). Concerning an assessment of trade-offs between the objectives, the7

most important result is that for the idealized case without efficiency losses, there are mostly synergetic8

effects between economic and environmental objectives when conducting optimizations of the production9

schedule. In particular, in none of the considered cases, an optimization for a single objective leads to a10
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deterioration of the other compared to a stationary operation. Nevertheless, one sees that there is a non-1

negligible space for balancing between the objectives. More precisely, optimizations for a single objective2

leave a substantial saving potential in the second objective of up to 3-4% unexploited. Summarizing,3

in case of near-ideal processes, i.e., with negligible efficiency losses, optimizations of the production4

schedule for economic performance, which are likely conducted from an entrepreneurial perspective, lead5

to improved environmental objectives, but do not exploit the full environmental potential.6

Furthermore, one finds a crucial importance of average utilization rates in Figure 3. If these are7

too high, almost no saving potentials can be exploited, leading to incentives for oversizing production8

facilities. Decreasing the average utilization rate evenly affects the economic and the environmental9

objective, so that Pareto curves are almost parallel to each other for a fixed process variant. Along the10

same lines, we find a nearly constant optimal average utilization rate along the corresponding Pareto11

curve. These findings are very important, as we can conclude that the average utilization rate that is12

favored from an economic perspective and thus highly relevant for investment decisions, is also favored13

from an environmental perspective.14

Finally, comparing the variants P1. . .P4, there is a strong dependence of both the achievable savings15

as well as the shape of the Pareto curves on the parametrization of the process. Whereas the first finding16

is an obvious result of the different flexibility potentials of the variants as discussed at the beginning17

of the subsection, the second finding is not as intuitive. For instance, we find that process variants18

with loosened ramping constraints exhibit Pareto curves, which extend over larger ranges of objective19

values and thus indicate more distinct trade-offs between the objectives. Moreover, in Figure 3 (b),20

the anchor points of the Pareto curves with lower average utilization rate do not always dominate the21

corresponding anchor points at higher average utilization rates, as is the case for all other variants. These22

findings indicate that measures adjusting the storage capacities and those adjusting ramping limits affect23

economic and environmental objectives in DSM in a different manner, which has been anticipated based24

on the spectra in Figure 2 and will be discussed in more detail in the following.25

Influence of off-design efficiency losses on Pareto curves26

Before analyzing the influence of storage capacities and ramping limits, we first study the effect of off-27

design efficiency losses. For this purpose, bi-objective optimizations using the process variants introduced28

above are repeated using a fixed oversizing of 20% (i.e., UR “ 79%). In contrast, we now vary the29

intensity of the off-design efficiency losses. Comparing the Pareto curves under consideration of off-30

design efficiency losses in Figure 4 to their respective references without losses, one finds a significant31

influence of the loss intensity on the achievable savings through an almost parallel shifting of the Pareto32

curves. For instance, when considering rather low losses of 10% at the lower operating bound, the33

saving potential in both objectives for all process variants is reduced by 30 . . . 50%. Moreover, high loss34
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(b) P2: 3 h storage capacity
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(c) P3: 48 h storage capacity

5%/h ramping limit
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(d) P4: 48 h storage capacity

25%/h ramping limit

Figure 4: Pareto curves for different parametrizations of the extended storage-type customer model
assuming varying curves for quadratic efficiency losses and using a fixed oversizing of 20% (i.e., average
utilization rate UR “ 79%). The solid red curve is the reference without losses. The dashed curve
corresponds to 5%, the dashed-dotted line to 10%, the dashed line to 20%, and the solid line to 33% losses
at the lower operating bounds compared to the reference. Thin dotted lines are depicted for orientation.
The intersection of dotted black lines corresponds to a stationary operation, the intersection of dotted
red lines gives the utopia point of the red Pareto curve. Used parametrizations are: (a) Smax “ 3 h
and ∆max “ 5%, (b) Smax “ 3 h and ∆max “ 25%/h, (c) Smax “ 48 h and ∆max “ 5%/h, and
(d) Smax “ 48 h and ∆max “ 25%/h.

intensities bear a severe risk that optimizations for economic objectives, which still yield promising cost1

savings, lead to an impaired environmental performance. In particular, applying the contribution to the2

residual load as environmental objective as done in this work, an optimal spot market participation can3

lead to a net increase in the environmental objective. Most likely, if applying other objectives, e.g., the4

carbon footprint of the electricity consumption, similar observations will be made.5

We furthermore remark that the findings presented above, i.e., that increased storage capacities and6

loosened ramping constraints do not affect economic and environmental objectives evenly, are crucial for7

assessing the risk of a net increase in the environmental objective. In particular, in case of processes8

with low storage capacities and a high load shifting agility (i.e., P2), economic optimizations are more9

likely to lead to an increase in the environmental objective even for large low-loss operating ranges. In10
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Figure 5: Parameter study for single-objective optimizations assuming an oversizing of 20% compared
to the reference with average utilization rate UR “ 95%. The relative effect, i.e., the additional savings,
from increasing the storage capacity Smax and loosening the ramping constraints ∆max is scaled between
its minimum (Smax “ 3 h, ∆max “ 5%/h) and maximum (Smax “ 48 h, ∆max “ 25%/h).

spite of that, our results indicate that the presence of off-design efficiency losses is not significant for the1

intended bi-objective assessment of measures increasing the flexibility potential, as we find rather even2

influences on the two objectives represented by nearly parallel Pareto curves.3

Parameter study for storage and ramping constraints4

As discussed in the previous subsection, it is sufficient to consider an ideal process without off-design5

efficiency losses for studying the influence of storage capacities and ramping limits on the economic and6

environmental objectives. We therefore conduct a detailed parameter study on their influences on the7

results of single-objective optimizations using a fixed average utilization rate UR “ 79%, which corre-8

sponds to an oversizing of 20% compared to the reference and thus enables promising saving potentials.9

In Figure 5, both objectives exhibit only weak gradients at the upper bounds of the considered param-10

eter ranges, indicating only minor additional improvements from increasing storage capacities to above11

Smax “ 48 h and loosening ramping limits to more than ∆max “ 25%/h. In fact, when discarding both12

storage and ramping constraints, the additional improvements are substantial smaller than what can be13

achieved by exhausting the parameter ranges from Figure 5. Thereby, our results indicate low additional14

economic and environmental values of providing seasonal storage capacities in the order of several hun-15

dreds of hours. Furthermore, it can be clearly seen that the two process parameters do not affect the16

two objectives evenly, representing a noticeable difference to the average utilization rate. In particular,17

we find that the influence of loosening ramping constraints, i.e., increasing a process’s agility, is much18

more distinct in case of the economic objective. For instance, comparing a process with low storage19

capacities and limited load shifting capabilities (P1 with Smax “ 3 h and ∆max “ 5%/h) to a process20

with substantial storage capacities and loose ramping limits (P4 with Smax “ 48 h and ∆max “ 25%/h),21
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one finds improvements in economic and environmental savings of factors 2.15 and 2.34 respectively. In1

case of the economic objective, „44% of this improvement can be obtained by only loosening the ramp-2

ing constraints while maintaining low storage capacities (P2), whereas this value is only „24% for the3

environmental objective. If in contrast only increasing storage capacities while maintaining the severe4

ramping limits (P3), one achieves „69% of the maximum improvement in the economic objective, but5

even „75% of the maximum improvement in the environmental one.6

Presumably, this behavior is caused by the different fluctuation patterns of the input time series,7

which are analyzed above by means of discrete Fourier transform (cf. Figure 2). Apparently, the different8

spectra require different process capabilities for an exploitation. More precisely, the identified electricity9

price spreads on short time scales (period lengths below 6 h) can only be exploited by processes with10

substantial load shifting capabilities, i.e., loose ramping limits. As spreads in the residual load share11

on a similar scale are much less distinct, the impact of loosening ramping constraints is less significant12

in case of the environmental objective. Following this argumentation, the very low sensitivity of the13

environmental objective to ramping limits above 10 . . . 15% is not surprising. Along the same lines,14

the differences in the spectra of the input time series also explain the course of the sensitivity of the15

objectives to storage limits. More precisely, the very distinct frequency component with period length of16

12 h in the price time series requires comparably low storage capacities for exploitation, resulting in high17

sensitivities of the economic objective in this range. As the frequency component with period length of18

24 h is less distinct, the sensitivity drastically decreases at higher storage capacities. As in case of the19

environmental objective, the frequency component with period length of 24 h is the dominant one, this20

behavior does not occur.21

With regard to a bi-objective assessment of different measures increasing the flexibility potential, the22

findings presented in this subsection are highly relevant, as they unveil a systematic problem: current23

price time series set promising monetary incentives for increasing a process’s load shifting capabilities,24

although this will not noticeably affect the process’s ability to contribute to a reduction of the residual25

load. Even more severely, there are no monetary incentives for increasing a process’s storage capacities26

up to the level that would be favored from an environmental perspective.27

Improvements from shut-down opportunities28

Finally, we assess possible improvements from temporary shut-downs by performing single-objective opti-29

mizations. For this purpose, we consider an ideal process without efficiency losses using a fixed oversizing30

of 20% (i.e., UR “ 79%) and a fixed ramping constraint of ∆max “ 10%/h. In the study, we vary both31

the storage capacity Smax and the maximum down-time τmax. As can be seen in Figure 6, temporary32

shut-downs are incentivized from both the economic and the environmental perspective, as they allow for33

avoiding peak hours in electricity prices as well as residual load shares. Nevertheless, differences between34
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(b) Environmental obj.

Figure 6: Analysis of additional savings in economic (a) and environmental (b) objectives enabled by
temporary shut-downs as a function of the maximum down-time τmax. A fixed oversizing of 20% (i.e.,
average utilization rate UR “ 79%) is used and a ramping constraint of ∆max “ 10%/h is imposed. Line
styles indicate the storage capacity Smax. Solid lines: Smax “ 12 h, dashed lines: Smax “ 24 h, dashed-
dotted lines: Smax “ 48 h. Values are scaled to the savings in the reference case with Smax “ 12 h and
without shout-downs. Calculations are conducted for τmax “ 0, 1, 2, 4, 8, 12 h.

the two objectives are apparent. In particular, we find that the additional savings through temporary1

shut-downs are substantially more distinct from the economic perspective and predominate the benefits2

from a further increase in the storage capacities. For instance, when considering a storage capacity of3

12 h as a reference, savings enabled by shutting down the process for only 1 h are more than twice as4

high as the savings from doubling the storage capacities without shut-down opportunities and still 50%5

higher than from quadrupling the storage capacities. Similar observations however cannot be made for6

the environmental objective. Here, the benefits from increasing storage capacities are more important.7

As discussed above, the reason for the described differences in the behavior lies in the different fluc-8

tuation patterns of the electricity price and the residual load share time series. In particular, electricity9

price spreads occur on faster time scales, leading to a higher “value” of short down-times of few hours10

compared to further increased storage capacities that are not required for short-term buffering. For11

the contribution to the residual load in contrast, the frequency components with large period lengths12

correspond to the only important spreads, explaining the higher importance of storage. Note that the13

differences in the influence on economic and environmental objectives are not as distinct for temporary14

shut-downs as for loosened ramping constraints, that hardly affect environmental savings (cf. Figure 5).15

This finding stems from the fact that shut-downs also widen the operating range, which is equally ben-16

eficial from both the economic and the environmental perspective as can be seen in Figure 3.17
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Key insights from the 2030 study using the projected time series1

In this subsection, we only qualitatively describe the key observations from the scheduling optimizations2

considering the projected time series for 2030 and omit a detailed presentation of quantitative results.3

Corresponding figures can however be found in the Supplementary Material. In particular, we are herein4

interested in the question whether the drawn conclusions will remain valid in the future, where electricity5

markets will be characterized by an even stronger penetration of generation from intermittent renewable6

sources. Furthermore, the considered setting also allows for assessing whether imperfectly competitive7

market behavior, which characterizes the historic 2017 price time series but not the projected 2030 time8

series, distorts the observations.9

Comparing the results for 2030 with those for 2017, the most noticeable difference is that the relative10

saving potentials are now larger for the environmental objective as anticipated by comparing the widths11

of the distributions (cf. Table 1). Note that this also has a considerable effect on the shape of the Pareto12

curves. These differences become most recognizable when considering off-design efficiency losses. Here,13

optimizations for the environmental objective now bear a risk of increasing costs and not vice versa as14

in 2017. Furthermore, the Pareto curves seem to shrink, which is in good agreement with the higher15

correlation coefficient in 2030 (cf. Figure 1). Note that both effects are likely a consequence of decreasing16

relative economic saving potentials in 2030. However, as discussed above, these can at least partially17

be explained by an assumed ideally competitive market avoiding extreme price peaks. In this work, we18

do not intend to draw a final conclusion whether an increase in the renewable generation will cause an19

increase in relative price spreads in addition to the inevitable rise in both average prices and absolute20

spreads. In contrast, we strongly emphasize that these findings do not affect the prioritization of different21

possible measures increasing the flexibility potential and should thus be discussed elsewhere.22

The observations made in the previous subsections are indeed still visible when considering the23

projected time series for 2030, although they appear slightly weakened. We thus conclude that parts24

of the high-frequency electricity price fluctuations that set incentives for loosening ramping constraints25

and creating shut-down opportunities but not for increasing storage capacities, presumably stem from26

a nonideal market behavior. However, the statements made concerning uneven influences of different27

measures increasing the flexibility potential on the two objectives remain unaffected. In particular,28

this includes the finding that measures loosening ramping limits or allowing for temporary shut-downs29

are also in future significantly incentivized from an economic perspective, although they continue to30

exhibit only minor capabilities for improving the environmental objective. Consequently, our observations31

are primarily caused by the prevalent market mechanisms governing the price setting that impose the32

differences in time scales for the fluctuations in electricity mixes and prices (cf. Figure 2) irrespective of33

the actual partially nonideal strategic behavior of market participants.34
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Conclusion1

We present a systematic assessment of measures increasing the flexibility potential with regard to both2

economic and environmental targets. Therein, the economic perspective is represented by achievable3

cost savings for the electricity purchase through the exploitation of day-ahead spot market price spreads,4

whereas environmental impacts are measured in a simplifying yet tangible manner by reductions in the5

contribution to the integral residual load through the exploitation of time-variable electricity mixes. We6

use a generic process model, which acts like a battery from a grid level perspective, comprising general7

formulations for DSM activities for load shiftings, including the possibility for temporary shut-downs,8

as well as for off-design efficiency loss characteristics. By varying the constituting process parameters,9

we consider the vast majority of DSM-relevant processes from literature, which allows for a systematic10

treatment not limited to a specific application.11

Before conducting numeric optimizations, we first analyze the input time series to be exploited and12

find different contributions of certain frequency components to the spectra. In particular, the electricity13

price time series is characterized by fluctuations on shorter time scales below one day. In contrast to that,14

the share of renewable electricity generation is mostly characterized by a day-night fluctuation. This15

then leads to uneven influences of certain measures increasing the flexibility potential when performing16

bi-objective optimizations of the schedule. Most importantly, we find that measures loosening ramping17

limits or allowing for temporary shut-downs are significantly incentivized from an economic perspective,18

although they exhibit only minor capabilities for reducing the residual load. The latter is achieved much19

more effectively through substantially increased storage capacities, which are in turn not monetarily20

incentivized in an adequate manner. Measures optimizing the operating range of processes - which are21

commonly designed for nearly full utilization - by oversizing existing production facilities however affect22

economic and environmental objectives evenly.23

For the future, we recommend further developments of the model to increase the generalizability and24

hence the significance of the results, e.g., by studying the interactions between seasonally varying product25

demands and the provision of load flexibility in detail. Along these lines, we are also interested in assessing26

the potentials of switching the energy sources. For instance, there are gas-fired but electrically boosted27

furnaces for glass production67. Here, temporarily increasing/decreasing the electricity consumption28

might be motivated either by economic or environmental considerations that do not necessarily need to29

result in similar operating schemes. Finally, we see clear benefits if incorporating design aspects into the30

scheduling optimizations by considering annualized costs and environmental impacts, but at the same31

time, acknowledge that these will be highly process-specific and in some cases also hard to quantify,32

particularly when assessing the environmental impacts.33

Although our analysis suggests that comparable observations are likely when considering other coun-34

tries, whose electricity markets apply similar pricing schemes and whose energy sectors are characterized35
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by comparably high penetrations of intermittent renewable electricity sources as the German one, we rec-1

ommend additional studies using both historic and projected future time series to validate the findings.2

Nevertheless, our results already give rise to the question whether adjustments in the market itself can3

overcome the described issues. In particular, these should aim at setting adequate monetary incentives4

for providing storage capacities that enable load shiftings on desired time scales in the order of one day.5

Here, it is worth investigating whether the desired balancing of day-night fluctuations should be consid-6

ered as an ancillary service to the power grid and should thus be compensated in a more active manner.7

Along these lines, future research should also include a third perspective into the assessment of measures8

increasing the flexibility potential at the demand side: the stabilization of the grid. This will on the9

one hand include the provision of ancillary services for balancing short-term frequency fluctuations that10

certainly require large capacities that can be ramped up and down on time scales, which are substantially11

faster than spot market fluctuations. On the other hand, this will also include the remedy of regional12

network congestion, where the prioritization of measures is certainly also not obvious and will thus re-13

quire systematic approaches. Concerning the latter, we are also particularly interested in extending the14

study towards market environments that account for network congestion in the price setting by applying15

nodal prices, as is done in several US-American electricity markets. In particular, this should address16

the question whether regional differences in the renewable electricity generation, which induce regional17

price signals due to limited transmission capacities, then also lead to different regional prioritizations of18

measures increasing the flexibility potential at the demand side.19
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Appendix 14.12.2020

A Results of the scheduling optimizations using projected time1

series data for 20302

Abstract: In addition to the optimization results presented in the manuscript applying historic time3

series data from 2017, a second study has been conducted using the projected time series for 2030. The4

corresponding result figures can be found in this document.5
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Appendix 14.12.2020

A.1 Pareto curves for the ideal storage-type customer model1
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Figure 1: Pareto curves for different parametrizations of the ideal storage-type customer model. The solid
black curve is the reference with an average utilization rate UR “ 95%. The dashed curve corresponds to
10% oversizing compared to the reference (i.e., UR “ 86%), the dashed-dotted curve to 20% (i.e., UR “

79%). The red solid line depicts the Pareto curve for an optimal average utilization rate. Thin dotted lines
are depicted for orientation. The intersection of dotted black lines corresponds to a stationary operation,
the intersection of dotted red lines gives the utopia point of the red Pareto curve. Used parametrizations
are: (a) Smax

“ 3 h and ∆max
“ 5%, (b) Smax

“ 3 h and ∆max
“ 25%/h, (c) Smax

“ 48 h and
∆max

“ 5%/h, and (d) Smax
“ 48 h and ∆max

“ 25%/h.
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A.2 Pareto curves for the extended storage-type customer model including1

efficiency losses2
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Figure 2: Pareto curves for different parametrizations of the extended storage-type customer model
assuming varying curves for quadratic efficiency losses and using a fixed oversizing of 20% (i.e., average
utilization rate UR “ 79%). The solid red curve is the reference without losses. The dashed curve
corresponds to 5%, the dashed-dotted line to 10%, the dashed line to 20%, and the solid line to 33% losses
at the lower operating bounds compared to the reference. Thin dotted lines are depicted for orientation.
The intersection of dotted black lines corresponds to a stationary operation, the intersection of dotted
red lines gives the utopia point of the red Pareto curve. Used parametrizations are: (a) Smax

“ 3 h
and ∆max

“ 5%, (b) Smax
“ 3 h and ∆max

“ 25%/h, (c) Smax
“ 48 h and ∆max

“ 5%/h, and
(d) Smax

“ 48 h and ∆max
“ 25%/h.
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A.3 Parameter study for storage and ramping constraints1
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Figure 3: Parameter study for single-objective optimizations assuming an oversizing of 20% compared
to the reference with average utilization rate UR “ 95%. The relative effect, i.e., the additional savings,
from increasing the storage capacity Smax and loosening the ramping constraints ∆max is scaled between
its minimum (Smax

“ 3 h, ∆max
“ 5%/h) and maximum (Smax

“ 48 h, ∆max
“ 25%/h).

A.4 Analysis of additional savings from temporary shut-downs2
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Figure 4: Analysis of additional savings in economic (a) and environmental (b) objectives enabled by
temporary shut-downs as a function of the maximum down-time τmax. A fixed oversizing of 20% (i.e.,
average utilization rate UR “ 79%) is used and a ramping constraint of ∆max

“ 10%/h is imposed. Line
styles indicate the storage capacity Smax. Solid lines: Smax

“ 12 h, dashed lines: Smax
“ 24 h, dashed-

dotted lines: Smax
“ 48 h. Values are scaled to the savings in the reference case with Smax

“ 12 h and
without shout-downs. Calculations are conducted for τmax

“ 0, 1, 2, 4, 8, 12 h.
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