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Abstract 

Typically, the consideration of nonlinear process models in discrete-time scheduling is 

limited to short planning horizons and/or coarse discretizations due to a linear scaling of 

the problem size with the number of considered scheduling intervals. To overcome this 

limitation, we recently proposed a wavelet-based algorithm focusing on scheduling 

problems with time-variable electricity prices, which iteratively adapts the time grid 

(Schäfer et int., Mitsos, doi:10.1016/j.compchemeng.2019.106598). In this work, we 

extend our approach by presenting a systematic method for the identification of 

promising initial aggregated time grids based on the analysis of the wavelet 

representation of the time series of electricity prices. We apply the procedure to a 

literature example addressing the scheduling of a seawater reverse osmosis (Ghobeity 

and Mitsos, doi: 10.1016/j.desal.2010.06.041). We demonstrate that substantial 

reductions in the number of optimization variables in a reduced-space formulation are 

possible, while furnishing feasible schedules that lead to insignificant deviations below 

0.05 % in the objective value compared to the global optimum using the full time grid.  

Keywords: Demand side management, Discrete-time scheduling, Reduced-space, 

Global optimization, Adaptive refinement 

1. Introduction 

The adjustment of the electricity consumption to time-variable electricity prices is an 

important measure to increase the competitiveness of industrial consumers (Mitsos et 

al., 2018). Consequently, sophisticated methodologies for discrete-time scheduling with 

time-variables prices have been proposed, mostly aiming at formulating mixed-integer 

linear programs (MILPs) that can be handled efficiently by state-of-the-art solvers (e.g., 

Ierapetritou et al., 2002; Mitra et al., 2012; Zhang et al., 2015). In contrast, although 

many processes are governed by strongly nonlinear characteristics, only few authors 

tried to consider nonlinear models in discrete-time scheduling (e.g., Ghobeity and 

Mitsos, 2010), as this leads to nonlinear programs (NLPs) with potentially multiple 

local solutions. Consequently, solving these problems requires global solution 

approaches that currently prohibit long planning horizons and/or fine discretizations. To 

overcome this limitation and allow for nonlinear scheduling with relevant horizons and 

sufficiently fine discretizations, we recently proposed an iterative algorithm combining 
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three key ideas (Schäfer et al., 2019): a reduced-space scheduling formulation, a time 

series aggregation, and a wavelet-based grid adaptation procedure. 

In this work, we extend our approach by a systematic method to identify a promising 

initial aggregated time grid. In particular, we perform an analysis of the wavelet 

representation of the time series of electricity prices to derive the initial grid. The 

proposed procedure is examined and benchmarked against state-of-the-art solution 

approaches for a case study. Therein, we consider the scheduling of a seawater reverse 

osmosis (SWRO) formulated as a mixed-integer nonlinear program (MINLP).   

2. Case study and solution approaches 

2.1. Process model and problem description 

We focus on the same case study as Ghobeity and Mitsos (2010), cf. Figure 1. All 

modeling equations, parameters and operating bounds can be found in their work. The 

SWRO model comprises eleven variables and ten nonlinear equations. The operation of 

the SWRO is hence fully determined by specifying one degree of freedom, e.g., the 

recovery ratio. As in the original reference, we further introduce a disjunction 

represented by an additional binary variable that allows for shutting down the plant. 

Discrete-time scheduling of the SWRO consequently corresponds to solving an MINLP 

with potentially multiple local minima, thus global solution approaches are preferred. 

We further assume an hourly discretization considering historic time-variable German 

Day-Ahead spot electricity prices retrieved from EPEX SPOT SE 

(https://www.epexspot.com/en/). The objective is to achieve lowest electricity costs for 

fulfilling a given production target, i.e., a fixed cumulated permeate production. 

Furthermore, the SWRO’s operation is constrained by bounds on the key variables: 

transmembrane pressure, high-pressure pump shaft frequency, recovery ratio and salt 

concentration in concentrate. 

2.2. Solution approaches using the full time grid 

When considering the full time grid, i.e., one grid point per hour of the horizon, we 

apply two different solution approaches for the MINLP. In the first one – referred to as 

full-space (FS) – all model variables and equations of each scheduling interval are 

exposed to the optimizer, as it is common practice in the formulation of discrete-time 

scheduling problems. In this case, model equations simply correspond to equality 

constraints and operating bounds to box-constraints on selected variables. 

In the second approach – referred to as reduced-space (RS) – only a truncated set of 

Figure 1: Schematic flowsheet of the considered process configuration for seawater reverse 

osmosis from Ghobeity and Mitsos (2010). 
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model variables is exposed to the optimizer; objective and constraints are expressed as 

functions thereof. This concept has been shown promising for global optimization of 

process flowsheets (Bongartz and Mitsos, 2017). In the considered case study, we 

expose two model variables per scheduling interval to the optimizer, although the 

SWRO’s operation would be fully determined by specifying only one, as the model 

equations cannot be solved analytically. We herein select the high-pressure pump shaft 

frequencies and the recovery ratios as optimization variables. All other model variables 

are expressed as explicit functions thereof. One equality constraint per scheduling 

interval ensures that the selected values of the optimization variables comply with the 

process model. We remark that, like in the FS formulation, the disjunction introduces an 

additional binary optimization variable per scheduling interval. 

2.3. Solution approaches using an aggregated time grid 

Using an RS scheduling formulation allows for the application of our recently proposed 

time series aggregation scheme (Schäfer et al., 2019), which aims at tailored time grids 

and thus avoids a global optimization considering the full grid with individual 

optimization variables in each interval. This is achieved by mapping one optimization 

variable to multiple intervals with similar electricity prices Thereby, the number of 

optimization variables in RS is reduced and thus decoupled from the number of 

considered scheduling intervals, enabling substantial savings in computational time. 

However, due to the mapping, all scheduling intervals and consequently all constraints 

are considered further on, ensuring that feasible schedules are furnished. In the 

computational study below, we make furthermore use of the proposed iterative grid 

adaptation. Therein, a wavelet transform of the solution from the previous iteration 

using a coarser grid is conducted and the obtained coefficients are analyzed as proposed 

by Schlegel et al. (2005), allowing  for  a systematic adjustment of the mapping 

procedure by inserting promising new and deleting insignificant grid points. 

In this work, we extend our approach by a systematic method to identify promising 

initial grids for the adaptation algorithm. More precisely, we first perform a wavelet 

transform of the input time series of electricity prices. Those wavelet coefficients with 

absolute values above a defined threshold are identified. Then, we use only the set of 

significant coefficients for the construction of the initial aggregated time grid following 

the procedure described in our previous work. Note that starting from this initialized 

grid, the same iterative adaptation algorithm as described above could be applied. 

However, for illustration purposes, we herein omit this possibility, so that we confine to 

one single optimization using the initial aggregated grid. 

3. Computational results 

3.1. Implementation and solver settings 

The FS formulation (full time grid) is implemented in GAMS version 26.1.0 (GAMS 

Development Corp.) and corresponding optimization problems are solved globally 

using BARON version 18.11.12 (Tawarmalani and Sahinidis, 2005) with standard 

settings. For RS formulations (full time grid, grid adaptation, and grid initialization), the 

model is implemented as sequential C++ code and global optimizations are conducted 

using our in-house open-source software MAiNGO (Bongartz et al., 2018). Inside 

MAiNGO, CPLEX (IBM Corp.) is used for the lower bounding procedure and 

KNITRO (Exler and Schittkowski, 2007) for the upper bounding. Apart from that, we 

apply standard settings. For all optimizations, we set the relative optimality tolerance to 
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0.005. Furthermore, we apply a time limit of 100,000 s of CPU time. For the grid 

adaptation algorithm, threshold values of 0.0001 for deletion and 0.7 for insertion are 

used. Concerning the construction of the initial aggregated grid, we apply a threshold 

value of 0.03. All threshold values are relative to the Euclidean norm of the considered 

vector of wavelet coefficients. For the grid adaptation approach, three iterations of the 

algorithm starting from an equally distributed initial grid (6 grid points) are conducted. 

3.2. Day-ahead scheduling 

First, we consider a day-ahead scheduling, i.e., 24 intervals of one hour, targeting the 

exploitation of price spreads between day and night. Table 1 summarizes the results for 

all solution approaches described in Section 2. Note that in all cases, the best feasible 

schedule is obtained within negligible time. Reported CPU times thus primarily stem 

from the lower bounding procedures. Due to the good performance of local solvers in 

the upper bounding even when considering the full time grid (in both FS and RS), the 

reported solution in this case is considered as the global optimum and thus used as the 

benchmark for all solutions with aggregated grids. We emphasize that in contrast to the 

approaches considering the full grid, the approaches using aggregated grids lead to 

converged solutions within the defined time limit. In particular, savings in 

computational time when using the aggregated grids are more than two orders of 

magnitude. Moreover, we find that substantial reductions in the number of considered 

grid points are possible, while causing only minor deviations in the objective value. For 

instance, when applying the initial aggregated grid using only eight grid points, a 

feasible schedule is furnished with a difference in the objective value of ~0.025 % 

compared to the global optimum. Likewise, the final schedule after the third iteration of 

the adaptation algorithm starting from an equally distributed grid leads to only ~0.01 % 

deviations compared to the global optimum by using ten grid points. 

Consequently, the corresponding final schedules obtained when using the aggregated 

grids look highly similar to the globally optimal schedule, as can be seen in Figure 2 

(left). In contrast, the intermediate results of the grid adaptation using 6 and 8 grid 

points respectively lead to inferior schedules that do not make use of the possibility for 

a temporary shutdown during peak hours. The reason for this finding lies in a distinct 

price peak at 21 h, which can only be exploited by assigning individual optimization 

variables to that hour, which is not possible in the first two iterations of the adaptation, 

as they are limited to aggregating at least four (first) or two (second) intervals. 

Table 1: Summary for solution approaches addressing a day-ahead scheduling (24 intervals). 

Asterisks indicate converged solutions. 

Solution approach Solver 

#Grid 

points 

CPU 

time  

Optimality 

gap 

Objective 

value 

[-] [s] [%] [%] 

RS-grid initialization MAiNGO 8 273 0.005* 100.025 

RS-grid adaptation iteration 1  MAiNGO 6 47 0.005* 100.66 

RS-grid adaptation iteration 2  MAiNGO 8 1,027 0.005* 100.65 

RS-grid adaptation iteration 3  MAiNGO 10 3,055 0.005* 100.01 

FS-full time grid  BARON 24 100,000 0.006 100 

RS-full time grid MAiNGO 24 100,000 0.021 100 
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Table 2: Summary for solution approaches addressing a week-ahead scheduling (168 intervals). 

Asterisks indicate converged solutions. 

Solution approach Solver 

#Grid 

points 

CPU 

time  

Optimality 

gap 

Objective 

value 

[-] [s] [%] [%] 

RS-grid initialization MAiNGO 10 22,334 0.005* 100.041 

FS-full time grid BARON 168 100,000 0.077 100 

We highlight that we successfully resolve this issue by following the proposed grid 

initialization procedure. In particular, we thereby a priori identify the most significant 

parts of the horizon requiring fine discretizations, while relying on coarser 

discretizations in insignificant parts. 

3.3. Week-ahead scheduling  

We also consider an hourly planning for one week, which allows for further exploiting 

weekly price patterns, such as lower prices on weekends. For the sake of brevity, we 

confine ourselves to comparing the proposed procedure for identifying an initial 

aggregated grid to the FS approach considering the full time grid. A solution summary 

is given in Table 2. Again, local searches perform exceptionally well, so that the best 

feasible solution is found in the upper bounding within short time. Thus, the reported 

solution using the full time grid is again assumed to be the globally optimal schedule.  

As in case of day-ahead scheduling, applying the initial aggregated grid from wavelet 

analysis of the price time series leads to a feasible schedule, while limiting losses in the 

objective value to <0.05 % compared to the global optimum and schedules look highly 

similar, cf. Figure 2 (right). Most impressively, this is achieved by using only ten grid 

points for the scheduling problem, corresponding to a reduction of the temporal 

dimensionality by 94 %, illustrating the efficacy of the approach for a priori identifying 

promising tailored aggregated time grids. Moreover, whereas the RS formulation using 

the aggregated grid results in a converged solution within the time limit, the approach 

considering the full grid leaves a substantial remaining optimality gap after exceeding 

the time limit. Comparing Tables 1 and 2 finally illustrates the superior scaling behavior 
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Figure 2: Final production schedules from the different solution approaches for day-ahead (left) 

and week-ahead (right) scheduling. Orange solid lines: result of a single optimization using an 

initial aggregated grid following the proposed procedure. Green dotted line: outcome after three 

iterations of the grid adaptation algorithm when using an equally distributed initial grid 

(transparent lines correspond to intermediate results). Blue dashed lines: globally optimal 

production schedule considering the full time grid. Light dotted grey lines: electricity prices. 
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of solution approaches using aggregated time grids. More precisely, decoupling the 

number of optimization variables from the number of scheduling intervals avoids the 

typically exponential scaling with the horizon length when using full time grids. 

4. Conclusions 

We extend our previously proposed algorithm for adaptive grid refinements in 

scheduling problems with time-variable electricity prices by a systematic method for the 

identification of promising initial aggregated time grids. The presented case study is 

suitable for assessing the efficacy of the approach due to a good performance of local 

solvers on this problem even for long horizons. Our results show that substantial 

reductions in the number of grid points and hence in the dimensionality of the 

scheduling problem are possible, enabling promising speed-ups in the optimization, 

while leading to only insignificant deviations in the objective value. Future work should 

focus on the application of the procedure to more challenging problems, where 

generating favourable feasible points is already difficult if considering the full time grid. 
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