Home > Publications database > The Potential of Hybrid Mechanistic/Data‐Driven Approaches for Reduced Dynamic Modeling: Application to Distillation Columns > print |
001 | 888850 | ||
005 | 20240712112852.0 | ||
024 | 7 | _ | |a 10.1002/cite.202000048 |2 doi |
024 | 7 | _ | |a 0009-286X |2 ISSN |
024 | 7 | _ | |a 1522-2640 |2 ISSN |
024 | 7 | _ | |a 2128/26533 |2 Handle |
024 | 7 | _ | |a WOS:000575310100001 |2 WOS |
037 | _ | _ | |a FZJ-2020-05264 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Schäfer, Pascal |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a The Potential of Hybrid Mechanistic/Data‐Driven Approaches for Reduced Dynamic Modeling: Application to Distillation Columns |
260 | _ | _ | |a Weinheim |c 2020 |b Wiley-VCH Verl. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1607966754_18333 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Extensive literature has considered reduced, but still highly accurate, nonlinear dynamic process models, particularly for distillation columns. Nevertheless, there is a need for continuing research in this field. Herein, opportunities from the integration of machine learning into existing reduction approaches are discussed. First, key concepts for dynamic model reduction and their limitations are briefly reviewed. Afterwards, promising model structures for reduced hybrid mechanistic/data‐driven models are outlined. Finally, crucial future challenges as well as promising research perspectives are presented. |
536 | _ | _ | |a 899 - ohne Topic (POF3-899) |0 G:(DE-HGF)POF3-899 |c POF3-899 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Caspari, Adrian |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Schweidtmann, Artur M. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Vaupel, Yannic |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Mhamdi, Adel |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Mitsos, Alexander |0 P:(DE-Juel1)172025 |b 5 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1002/cite.202000048 |g Vol. 92, no. 12, p. 1910 - 1920 |0 PERI:(DE-600)2035041-7 |n 12 |p 1910 - 1920 |t Chemie - Ingenieur - Technik |v 92 |y 2020 |x 1522-2640 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/888850/files/Schaefer2020_CIT_HybridModeling.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/888850/files/cite.202000048.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:888850 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)172025 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 5 |6 P:(DE-Juel1)172025 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF3-890 |0 G:(DE-HGF)POF3-899 |2 G:(DE-HGF)POF3-800 |v ohne Topic |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-09-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-09-08 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-09-08 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CHEM-ING-TECH : 2018 |d 2020-09-08 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-09-08 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-09-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-09-08 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-09-08 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-09-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-09-08 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-09-08 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-09-08 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|