001     888850
005     20240712112852.0
024 7 _ |a 10.1002/cite.202000048
|2 doi
024 7 _ |a 0009-286X
|2 ISSN
024 7 _ |a 1522-2640
|2 ISSN
024 7 _ |a 2128/26533
|2 Handle
024 7 _ |a WOS:000575310100001
|2 WOS
037 _ _ |a FZJ-2020-05264
082 _ _ |a 660
100 1 _ |a Schäfer, Pascal
|0 P:(DE-HGF)0
|b 0
245 _ _ |a The Potential of Hybrid Mechanistic/Data‐Driven Approaches for Reduced Dynamic Modeling: Application to Distillation Columns
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH Verl.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607966754_18333
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Extensive literature has considered reduced, but still highly accurate, nonlinear dynamic process models, particularly for distillation columns. Nevertheless, there is a need for continuing research in this field. Herein, opportunities from the integration of machine learning into existing reduction approaches are discussed. First, key concepts for dynamic model reduction and their limitations are briefly reviewed. Afterwards, promising model structures for reduced hybrid mechanistic/data‐driven models are outlined. Finally, crucial future challenges as well as promising research perspectives are presented.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Caspari, Adrian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schweidtmann, Artur M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vaupel, Yannic
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mhamdi, Adel
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/cite.202000048
|g Vol. 92, no. 12, p. 1910 - 1920
|0 PERI:(DE-600)2035041-7
|n 12
|p 1910 - 1920
|t Chemie - Ingenieur - Technik
|v 92
|y 2020
|x 1522-2640
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888850/files/Schaefer2020_CIT_HybridModeling.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888850/files/cite.202000048.pdf
909 C O |o oai:juser.fz-juelich.de:888850
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-08
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-08
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM-ING-TECH : 2018
|d 2020-09-08
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-09-08
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-08
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-08
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-08
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-08
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21