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Pascal Schäfer1, Adrian Caspari1, Artur M. Schweidtmann1, Yannic Vaupel1, Adel Mhamdi1

and Alexander Mitsos1,2,3,*

DOI: 10.1002/cite.202000048

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.

Extensive literature has considered reduced, but still highly accurate, nonlinear dynamic process models, particularly for

distillation columns. Nevertheless, there is a need for continuing research in this field. Herein, opportunities from the

integration of machine learning into existing reduction approaches are discussed. First, key concepts for dynamic model

reduction and their limitations are briefly reviewed. Afterwards, promising model structures for reduced hybrid mechanis-

tic/data-driven models are outlined. Finally, crucial future challenges as well as promising research perspectives are

presented.
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1 Introduction – Revisiting an Old Topic

Separation sequences are of crucial importance for process
economics. Consequently, improving the operation of distil-
lation columns has always been an important research topic
in process systems engineering (PSE) [1]. However, distilla-
tion columns pose severe challenges for model-based con-
trol strategies due to large system sizes and nonlinear ther-
modynamics. These circumstances led to substantial efforts
in the 1980’s and early 1990’s targeting the development of
reduced nonlinear dynamic distillation models for use in
model predictive control (MPC) algorithms [2–10].

Early works addressing nonlinear MPC (NMPC) for dis-
tillation columns were conducted in times of process oper-
ating strategies focusing on maintaining desired stationary
operating conditions by rejecting disturbances. Nowadays
in contrast, transient operating schemes become increas-
ingly important in order to cope with increasingly volatile
market conditions, in particular fluctuating electricity prices
resulting from an increasing penetration of renewable ener-
gy sources [11, 12]. In this context, energy-intense air sepa-
ration units (ASUs) gained much attention from the sched-
uling perspective [13–15]. Strategies for exploiting time-
variable electricity prices inherently rely on transient pro-
cess operation. However, this poses severe challenges for the
process control of ASUs due to large liquid holdups in dis-
tillation columns and thus large time constants and dead
times [16, 17]. Hence, industrially common MPC schemes
employing linearized models appear unsuitable for this pur-

pose due to limited predictive capabilities across the entire
operating range [18].

This change in operating strategies motivates further re-
search efforts concerning NMPC schemes for distillation
processes, which includes the further development of suit-
able reduced nonlinear dynamic models. For instance, Cao
et al. [19] proposed the use of reduced-order collocations-
based models (e.g., [3, 4]) for distillation columns in ASUs
and investigated their application for process control
[20, 21]. Likewise, we recently presented an extended com-
partment model that uses artificial neural networks (ANNs)
as surrogate models replacing complex intra-compartment
relations [22] and demonstrated its suitability for applying
economic NMPC to ASUs [23]. In that approach, the combi-
nation of mechanistic modeling principles and machine
learning enables a favorable trade-off between model accu-
racy and computational efficiency. Thereby, reductions in
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computational times of almost
two orders of magnitude com-
pared to a full-order stage-to-
stage model were achieved while
ensuring similar predictive capa-
bilities.

Herein, we provide a critical
discussion of opportunities and
limitations of such hybrid mecha-
nistic/data-driven approaches for
reduced dynamic modeling with a
particular focus on the operation
of distillation columns. Note that
efforts addressing the develop-
ment of efficient NMPC algo-
rithms [24–28] are complementa-
ry, i.e., real-time capable control
solutions will require both re-
duced dynamic models and effi-
cient numerical algorithms. This
discussion is, however, out of the
scope of this manuscript.

In the remainder, first an introductory review of existing
dynamic model reduction approaches is provided, and their
strengths and weaknesses are discussed. Afterwards, it is
outlined how the integration of machine learning can over-
come limitations of existing reduction approaches by using
data-driven techniques. Although the focus is on ASUs, the
conclusions will hold for any distillation system. Moreover,
a generalization of the concepts is presented to account for
other spatially distributed process systems and potential
fields of application. Finally, the most crucial remaining
challenges as well as and promising future research activ-
ities are addressed.

The main contribution of this work lies in encouraging
researches to revisit classical reduced modeling approaches
in the light of recent progress in data science and machine
learning. We emphasize that we herein do not intent to
claim a general superiority of one particular method.
Rather, we believe that the method to be applied has to be
selected in a very case-sensitive manner. Nevertheless, a
thorough comparative assessment of the variety of potential
approaches arising from the integration of machine learn-
ing into existing model reduction techniques is of a high
practical interest and recommended for future research.

2 Limits of Classical Reduced Dynamic Model-
ing Approaches for Distillation Columns

Existing approaches for reduced dynamic modeling of dis-
tillation columns can be classified into three categories
(Fig. 1): (i) collocation-based approaches, (ii) compartmen-
talization / stage aggregation, and (iii) nonlinear wave mod-
els. In the following, their concepts and limitations are
briefly reviewed.

2.1 Collocation-Based Approaches

Collocation-based model reduction approaches (Fig. 1a)
approximate the column profile by interpolating between a
finite number of collocation points. By selecting substan-
tially fewer collocation points than theoretical stages, a sub-
stantial model reduction is achieved [3, 4]. The column
states above and below each collocation point, which are
required for the mass and energy balances, are calculated
through interpolation. For instance, Cao et al. [19] apply
second-degree Lagrange polynomials. The locations of the
collocation points can but do not necessarily need to coin-
cide with the locations of actual stages.

Using a collocation-based approach, the number of
MESH equations is reduced, leading to a smaller differential
algebraic equation (DAE) system for a distillation column.
As the structure of the DAE system, however, remains
almost unaffected, the reduction of the size of the system
will directly translate into savings in computational time for
integration. For instance, Cao et al. [19] find a nearly linear
scaling of simulation times with respect to the number of
collocation points used. This behavior constitutes an impor-
tant advantage of collocation-based models: the degree of
reduction can a priori be chosen by selecting the number of
collocation points.

The achievable degree of reduction of collocation-based
models is obviously limited by accuracy requirements. In
other words, too high degrees of reduction lead to substan-
tial deviations from the predictions of full-order models for
both the stationary and the transient behavior. For a
detailed study on this trade-off, refer to the work of Carta et
al. [29]. Most importantly, the authors find that there is a
minimum number of collocation points that is required to
accurately reproduce the characteristics of the transient
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Figure 1. Illustration of the key concepts of classical dynamic model reduction approaches for
distillation columns.
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behavior, which strongly depends on the considered mix-
ture. Consequently, desirable large degrees of reduction
might easily introduce unphysical behavior, such as addi-
tional steady states.

2.2 Compartmentalization and Stage Aggregation

Compartmentalization (Fig. 1b) has been proposed as an
alternative to collocation-based approaches [5]. Its mathe-
matical derivation is given by Lévine and Rouchon [8] and
builds on singular perturbation theory. In addition, there is
a physically meaningful interpretation (e.g., [30]): A column
model is split up into a number of compartments. One
compartment is described by the dynamic compartment
balances, stationary single-stage balances for all included
stages except for one so-called sensitivity stage, and equilib-
rium calculations for all stages. Thus, the approach applies
a separation by time scales assuming single-stage dynamics
to be negligible compared to overall compartment dynam-
ics.

Compartment models reproduce exactly the correspond-
ing full-order model’s steady state. This finding is indepen-
dent of the degree of reduction and, thus, represents a ma-
jor advantage compared to collocation-based reduction
approach. In contrast, the transient behavior of compart-
ment models depends on the number of compartments,
their sizes, and the locations of the sensitivity stages. Hor-
ton et al. [7] present heuristics for these choices and dem-
onstrate that dynamic responses of compartment models
can be close to those of the corresponding full-order mod-
els, even if relying on substantially fewer differential equa-
tions. Likewise, Bian et al. [31] apply the compartmentaliza-
tion approach to a distillation column of an ASU and find
only small influences on the dynamic behavior even if re-
ducing the number of differential equations by one order of
magnitude.

Linhart and Skogestad [30] propose a different perspec-
tive of compartment models and introduce the concept of
stage aggregation. More precisely, the mathematical formu-
lation of a compartmentalized column is equivalent to
interconnecting dynamic stages (with aggregated holdups)
and stationary columns (without holdups), making the defi-
nition of compartments superfluous. Instead, the selection
of aggregation stages and the definition of their initial hold-
ups become relevant. The authors also provide a study on
the computational efficiency of stage aggregation (and
hence also of compartment) models. Summarizing their
findings, the reduction approaches manipulate the stiffness
of the DAE system instead of reducing its size. Conse-
quently, improvements in the computational efficiency
strongly depend on the integration method as well as the
time constants of the input signal and are in no case guar-
anteed. In a second study, the same authors identify the
solution of the large-scale nonlinear algebraic equation sys-
tems describing the intermediate stationary columns to be

the computational bottleneck of compartment and stage
aggregation models [32]. To overcome this limitation, they
propose the use of explicit functions interpolating between
precalculated solutions, which exhibits an unfavorable scal-
ing with both the level of detail of the table and the number
of components in the column. However, we recently
extended this concept by integrating machine learning tech-
niques [22].

2.3 Nonlinear Wave Models

The last class of reduction approaches interprets column
profiles as travelling waves (Fig. 1c) and describes their
movement in space and time by partial differential equa-
tions [33]. Early work of Gilles and Retzbach [2] proposes a
first wave model for binary columns assuming sharp, i.e.,
discontinuous, temperature and concentration profiles. Lat-
er on, the wave model presented by Marquardt [6] over-
comes the limitation to sharp profiles. The work by Kienle
[10] finally generalizes the concept to multicomponent mix-
tures. Under certain thermodynamic assumptions (in par-
ticular, constant molar overflow and relative volatilities),
the wave equations can be solved analytically and
embedded into overall column balances. For this purpose,
we recently extended the nonlinear wave model by an over-
all mass and energy balance that account for varying col-
umn holdups occurring in case of load changes [34]. More
precisely, we thereby embed the wave equations into a com-
partmentalization approach.

Nonlinear wave models correspond to low-dimensional
representations of distillation columns by definition,
enabling promising opportunities for savings in computa-
tional times. As an important advantage compared to collo-
cation-based or compartment models, the size of the DAE
system describing the nonlinear wave model is independent
of the size of the original full-order model. Moreover, the
approach does not rely on a priori definitions of collocation
points, compartment boundaries, aggregated stages, etc.,
mitigating risks for impaired model performance from sub-
optimal model set-ups.

As a limitation, nonlinear wave models inherently rely on
simplifying assumptions on the thermodynamic properties.
Consequently, there is a significant dependence of the mod-
el’s predicting capabilities on the considered mixture. For
instance, when applying the extended multicomponent
nonlinear wave model to the high-pressure nitrogen col-
umn of an ASU, good prediction capabilities in case of
rarely nonideal behavior (a mixture containing mostly
nitrogen and oxygen) were shown [34]. At the same time,
large deviations from full-order stage-to-stage models in
case of strongly nonideal mixtures are likely and restrict the
applicability of nonlinear wave models.
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2.4 Interim Conclusion

A variety of dynamic model reduction approaches is avail-
able for distillation columns with numerous successful
applications in literature for all of them. Moreover, one
finds no general superiority of one approach. That is, each
of the approaches offers certain promising advantages,
which make it promising for specific use cases. Neverthe-
less, these advantages are in all cases accompanied by disad-
vantages that certainly limit the performances.
a) Collocation-based models represent a convenient way

to reduce the number of MESH equations and, hence,
the size of the DAE system. However, they bear a severe
risk of introducing unphysical behavior for desired large
degrees of reduction.

b) Compartmentalization and stage aggregation make use
of a separation by time scales that does not depend on
the thermodynamic properties. Thereby, they effectively
reduce the number of differential equations. In standard
variants, their computational performance is, however,
not promising.

c) Nonlinear wave models allow for representing an entire
distillation column by only one wave equation per com-
ponent. However, they make strong assumptions on the
underlying thermodynamics when deriving the solution,
limiting their applicability to near-ideal mixtures.

Desired novel reduction approaches should combine the
benefits and avoid the drawbacks by (i) enabling substantial
reductions of the size of the DAE system that directly trans-
late into savings in computational times, (ii) reproducing
physically meaningful behavior even for high degrees of
reduction, and (iii) being independent from the considered
thermodynamic system in terms of performance.

3 New Opportunities through Machine
Learning

Machine learning techniques have already been applied in
PSE several decades ago (e.g., [35, 36]). Currently, research
in this field is re-emerging after a period of low activity [37]
with numerous successful applications [38, 39]. In particu-
lar, hybrid mechanistic/data-driven (also called semi-para-
metric/empirical or gray box) modeling approaches appear
promising as they enable a balance between first-principle
mechanistic (white box) and data-driven (black box) mod-
els [40].

In the following, some recent relevant applications in
chemical engineering are reviewed. Afterwards, a structural
classification for using these techniques to enhance existing
dynamic model reduction approaches is introduced. Finally,
a more detailed discussion of a recently published example
of a hybrid mechanistic/data-driven approach to reduced
dynamic modeling of distillation columns is provided.

3.1 Hybrid Mechanistic/Data-Driven Modeling in
Chemical Engineering

The idea to combine mechanistic equations with efficiently
evaluable data-driven model parts has gained substantial
attraction in PSE. During the last decades, hybrid model
structures have widely been used to replace complex equa-
tion systems that would arise from purely first-principle
mechanistic models and thereby accelerate process simula-
tions and/or optimizations [40, 41]. In particular, numerous
authors used surrogate models to replace thermodynamic
property calculations in order to speed up process simula-
tions/optimizations. Here, the surrogate models of choice
are typically artificial neural networks (ANNs) and Gaus-
sian processes (GP, also referred to as Kriging).

For instance, Nentwich et al. [42] apply both ANNs and
GPs as explicit surrogate models for calculating fugacity
coefficients in a hydroformylation process replacing an iter-
ative procedure from the PC-SAFT property model. Like-
wise, we replace implicit thermodynamic functions from
the Helmholtz equation of state for working fluid properties
in an organic Rankine cycle by ANNs that allow for calcu-
lating any property in an explicit way, thereby speeding up
deterministic global optimization of the process [43, 44].
Moreover, there are further approaches that directly replace
tedious iterative calculations of phase equilibria by surro-
gate models, e.g., both McBride et al. [45] and Nentwich
et al. [46] use GPs for explicitly calculating liquid-liquid
equilibria compositions in a decanter, whereas we replace
vapor-liquid equilibrium calculations in a flash by ANNs
[47].

3.2 Enhancement of Existing Dynamic Model
Reduction Approaches Using Machine Learning

Due to the progress in hybrid mechanistic/data-driven
modeling, it is promising to investigate the suitability of this
concept for dynamic model reduction. In particular, we tar-
get the integration of data-driven sub-models into existing
dynamic model reduction approaches to overcome their
limitations (see Sect. 2.4). We confine to structures with the
data-driven part accounting only for stationary (i.e., alge-
braic) relations, which is motivated by three key observa-
tions:
a) Recent literature (Sect. 3.1) shows that data-driven ap-

proaches are highly suited for replacing stationary
chemical engineering relations.

b) The reviewed dynamic model reduction approaches for
distillation columns (Sect. 2) already lead to reduced-or-
der DAE systems comprising a low number of differen-
tial model equations.

c) In general, the differential equations for describing
physical systems inherently correspond to linear conser-
vation laws, for which effective model order reduction
techniques exist (e.g., [48–50]).
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Depending on the arrangement of the mechanistic and
the data-driven model parts, we distinguish between two
basic structures for reduced hybrid dynamic modeling (cf.
[51]) as shown in Fig. 2. Note that we therein further con-
fine to semi-explicit time-continuous DAE systems of dif-
ferential index one for the sake of simplicity.

In the first structure (Fig. 2a), a data-driven model d(�)
estimates the residual e(t) between the predictions of a re-
duced-order mechanistic model ~y tð Þ and the corresponding
full-order model’s outputs y(t). This residual can in general
be a function of the system input u(t) as well as the current
state of the reduced-order model, represented by the differ-
ential variables x̂ tð Þ and the algebraic ẑ tð Þ. Note that this
hybrid model structure is very general, as it requires no
knowledge about the full-order mechanistic model. It rather
treats the full-order model as a black box and aims at mini-
mizing output deviations. The approach depicted in Fig. 2a
appears highly suited if a reduced-order model that exhibits
a promising mathematical form, but still captures the most
relevant output dynamics, is readily available. In this case, a
data-driven residual estimator could be used to compensate
for any non-negligible deviations from the behavior of the
original full-order mechanistic model. For instance, consid-
ering the application to reduced-order dynamic distillation
models, one could enhance a nonlinear wave model by a da-
ta-driven residual estimator to account for nonideal ther-
modynamic behavior.

The alternative approach (Fig. 2b) uses an explicit surro-
gate model for calculating selected algebraic variables ~z tð Þ
used in the mechanistic equation system of the reduced-or-

der model, for which analytic expressions are either
unknown or computationally too expensive (e.g., [52, 53]).
As above, the complicating algebraic variables ~z tð Þ are given
as an explicit function d(�) of the system input u(t), the dif-
ferential states x̂ tð Þ of the reduced-order model and its re-
maining algebraic states ẑ tð Þ. In contrast to the approach
using a residual estimator, this type of hybrid model
requires insights into the full-order model. Consequently,
the approach in Fig. 2b aims at cases where the reduced-
order model still relies on detailed modeling of some of the
involved phenomena and, thus, suffers from an impaired
computational performance. Following this discussion,
compartment models could be enhanced in that way by us-
ing surrogate models to replace the solution of the complex
nonlinear algebraic equation systems describing the intra-
compartment relations. Likewise, stage aggregation models
could be enhanced by using surrogate models to replace the
stationary columns between two aggregated stages.

Both presented basic structures for reduced hybrid
dynamic models give rise to a large variety of potential con-
crete models for a specific application, particularly by se-
lecting both the complexity of the mechanistic model part
and the structure of the surrogate model. Below, such a con-
crete reduced hybrid dynamic model is presented for a dis-
tillation column. Note that this is one illustrating example
among the vast amount of opportunities and it is not
claimed to be the best hybrid model for all purposes.
Depending on the intended use case, the hybrid model will
have to meet specific needs as will be discussed in Sect. 5, so
that other model structures might be favored.

3.3 Example: An ANN-Based
Compartment Model

In the following, we discuss our
recently presented ANN-based
compartment model as a proto-
type of a reduced hybrid dynamic
model. We herein confine to dis-
cussing its properties. A detailed
derivation as well as a numerical
study on its computational per-
formance can be found in [22].
The ANN-based compartment
model builds on the classical
compartmentalization by divid-
ing a column into a predefined
number of compartments com-
prising several consecutive stages.
Instead of relying on the solution
of large complex algebraic equa-
tion systems within the compart-
ments defined by the stationary
MESH equations of inner stages,
ANNs are used as explicit surro-
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gate models (Fig. 3a). The ANNs compute the compartment
outputs (outgoing streams and their compositions) from
the compartment inputs (ingoing streams and their compo-
sitions) and the differential compartment states (overall
compartment mass and compositions). Thereby, a compart-
ment is modeled in a similar way as a simple flash unit,
where the outputs are given as explicit functions of the
inputs and the differential states, e.g., a T-x-flash. An ANN-
based compartmentalized distillation column model can,
thus, still be considered as interconnected MESH equations.
However, it comprises substantially fewer differential
balance equations compared to full-order stage-to-stage
models. Moreover, an ANN-based compartment model sat-
isfies fundamental balance relations, representing a major
advantage of any compartmentalized model over colloca-
tion-based approaches.

The use of surrogate models represents a second source
of errors in addition to potential errors from manipulating
the stiffness of the DAE system through compartmentaliza-
tion (Sect. 2.2). Whereas the latter only affects the transient
model behavior, errors from the ANNs are also present in
steady state. However, previous results (cf. [22]) show that
the complexity of the ANNs does not significantly influence
the computational performance in dynamic simulations.
Thus, the additional model error from the ANNs can be re-
duced to almost arbitrary size by using adequately complex
networks and well-distributed data sets for training, while
only insignificantly impairing computational times. In con-
trast, the number of compartments used and thus the
degree of reduction of differential states represents the
bottleneck. More precisely, the desired accuracy of the tran-
sient model behavior defines a minimum number of
required compartments, which can be identified before the

surrogate modeling. The introduction of any additional
compartment is accompanied by an inevitable increase in
computational times.

As is the case for any hybrid mechanistic/data-driven
model, the prediction capabilities of the ANN-based com-
partment model depend on the training data. However, as
the ANNs only replace well-defined stationary (algebraic)
equations, training data can be obtained easily by solving
these equations offline. Here, a suitable coverage of the rele-
vant input space can be achieved by using advanced sam-
pling methods (e.g., [42, 54, 55]). Assuming maximum
internal column flows to be known and considering that
compositions are inherently bounded between zero and
one, the risk for extrapolation of the ANNs could, thus, in
principle be entirely circumvented.

Note that the stage aggregation analogy from Linhart and
Skogestad [30] again allows for an alternative perspective
on the model (Fig. 3b). Here, the ANNs replace a series of
interconnected stationary stages, which corresponds to
learning the input-output behavior of stationary distillation
columns. This hybrid model set-up, therefore, also appears
appealing considering previous progress in replacing single
flash units including the analysis of guaranteed worst-case
accuracy [47].

4 Generalization to Spatially Distributed
Systems and Possible Fields of Application

Many authors recognized analogies between mathematical
models for distillation columns and those for other spatially
distributed process units. These analogies motivated the
adaptation of classical dynamic model reduction approach-

es developed for columns to other
spatially distributed process units, in-
cluding fixed bed reactors [33, 56]
and heat exchangers [19, 56]. Apply-
ing the proposed hybrid mechanistic/
data-driven model structures (Fig. 2)
to other spatially distributed process-
es is indeed also possible and has a
high potential. For instance, intensi-
fied processes like reactive distillation
are highly promising for reducing
both capital invest and energy use
[57]. Likewise, the transition towards
bio-based process routes causes a
need for integrated separation tech-
niques by combining, e.g., distillation
and extraction [58]. Finally, flexible
energy processes are designed to cope
with fluctuating sources, e.g., organic
Rankine cycles for waste heat recov-
ery in vehicles [59]. Note that all of
these examples are governed by
strong nonlinearities and/or transient
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Figure 3. Structure of ANN-based compartment (a) and stage aggregation (b) models as ex-
amples for hybrid mechanistic/data-driven approaches to reduced dynamic modeling of dis-
tillation columns.
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behavior, motivating the development of advanced control
methods that in turn require accurate, but not too complex
nonlinear models. These models might as well be improved
by combining mechanistic knowledge with data-driven
approaches as shown above.

Moreover, many relevant applications involve the appear-
ance and disappearance of phases, e.g., during start-up and
shutdown of flexibly operated distillation columns [60].
Likewise, operation of evaporators with transient heat sour-
ces leads to moving phase boundaries [61]. Consequently,
future work should also investigate the applicability of the
hybrid reduction approaches with regard to optimization-
oriented model formulations accounting for discrete event
[62, 63].

5 Future Challenges and Opportunities

Although the described ANN-based compartment model
enables a promising trade-off between model reduction and
accuracy [22, 23], several issues remain concerning an
industrial NMPC implementation and are discussed in the
following. We again emphasize that these issues are also rel-
evant for other hybrid mechanistic/data-driven modeling
approaches.

5.1 Balance between Mechanistic Knowledge and
Machine Learning

As stated earlier, hybrid mechanistic/data-driven models
represent a compromise between first-principle mechanistic
models and data-driven techniques. Here, the extent of
replacing mechanistic equations with data-driven models
(i.e., the complexity of the reduced-order mechanistic mod-
el in Fig. 2) is an important degree of freedom during mod-
eling and crucial for the model’s performance. In particular,
a high use of surrogate modeling can improve the computa-
tional performance due to beneficial mathematical forms
but also increase the reliance on suitable training data. For
instance, considering our ANN-based compartment model,
one could confine to replacing only the single-stage flash
equations instead of replacing the entire algebraic equation
systems comprising mass and energy balances as well. This
would certainly lower the reliance of the alternative model
on data by using available mechanistic knowledge about
intra-compartment relations. However, at the same time,
the computational performance would likely be impaired,
as strongly interconnected single-stage equation systems
would remain.

Future research should thoroughly investigate up to what
extent mechanistic model parts should best be replaced by
data-driven approaches. Note that this decision will need to
account for the availability of data. In other words, the deci-
sion will likely be different in cases where excessive
amounts of data can be generated easily in-silico compared

to cases where the generation of data involves either costly
experiments or interventions of the operation of a process.
Whereas in the first case (data is easily available from in-
silico simulations), the selection of the data-driven model
parts might solely depend on computational issues, in the
latter case (costly data generation from experiments), the
structure of the hybrid model needs to match the available
data. In particular, it becomes obvious that in the latter case,
only those relations can be replaced where both the input
and output of the data-driven model can be measured or
estimated.

5.2 Model Reduction vs. Model Identification

Revisiting the referenced approaches for hybrid mechanistic/
data-driven modeling independently from the question of
stationary vs. dynamic, one finds that in almost all cases,
authors have been in the comfortable situation of having the
‘‘real’’ model for data generation. Undeniably, in industrial
settings, this will not always be the case, as the construction
of high-fidelity full-order models is tedious and expensive.

Conditions will, therefore, change in many practical situ-
ations, so that the required data will necessarily originate
from measurements, involving the previously described
implications concerning the selection of the extent of re-
placing mechanistic equations (Sect. 5.1). This observation
makes a further distinction necessary: first, consider the
case where the data is obtained in offline lab-scale experi-
ments, e.g., heat/mass transfer coefficient correlations, par-
tition coefficients, or reaction rates. Then, the conceptual
procedure is essentially the same as in cases where a high-
fidelity model is available, i.e., an adequate sampling of the
input space is conducted, and only needs to respect addi-
tional constraints on the number of experiments one is will-
ing to perform. In contrast, in cases where the only data
source is an existing monitored process, one finds a severe
conflict of interest between model identification (that aims
at covering the entire operating range) and a safe operation
of the process (that preferably stays in regions where the
model is accurate). In order to identify the data-driven
model parts without consciously disrupting the operation
for identification purposes, adaptive approaches represent
an alternative, where the data-driven model is successively
identified (cf. [64]).

5.3 Industrial Application

The promise of getting reduced hybrid models adaptively
from available, i.e., measured, plant operating data
(Sect. 5.2) would certainly facilitate the application of the
proposed model structures in industrial practice. Such a
procedure becomes even more appealing considering that it
matches the current industrial workflow for obtaining linear
control models through small excitations of the plant very
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well. In contrast, deriving a high-fidelity full-order process
model possibly from scratch in order to replace some of its
parts by surrogate models would represent a much stronger
intervention of established workflows and might thus strug-
gle with acceptance problems.

The increasing importance of digitalization and concepts
like digital twins, however, indicate an upcoming paradigm
change. In particular, the benefits from having sound mod-
el-based decision-support throughout the lifetime of a plant
are increasingly recognized as a measure to ensure the com-
petitiveness of the chemical industry [1, 65, 66]. Certainly,
this trend might at some point help to overcome several of
the presented issues.

Finally, hybrid mechanistic/data-driven modeling ap-
proaches need to become ready-to-use in state-of-the-art
dynamic modeling environments. In particular, there is a
strong need to simplify the current cumbersome academic
hybrid modeling workflow. That is, generated data irrespec-
tive of its source is first transformed manually to the desired
input format of the surrogate-modeling environment, e.g.,
the MATLAB Deep Learning Toolbox (The MathWorks,
Inc.) or TensorFlow (Google LLC). Afterwards, the surro-
gate model needs to be parsed into the desired modeling
language, e.g., Modelica (The Modelica Association) or
gPROMS (PSE Ltd.), via ad hoc solutions. Obviously, in
future, all required steps should preferably be conducted in
one tool, which ideally should enable comfortable ways of
processing real or in silico generated plant data and provide
guidance for non-expert users through all steps.

6 Conclusion

The construction of reduced dynamic models for spatially
distributed process units, particularly for distillation col-
umns, has been a well-investigated research field for more
than three decades. However, recent advances in data-driv-
en and hybrid mechanistic/data-driven modeling motivate
to revisit this research field and open promising opportuni-
ties for overcoming the limitations of known approaches.

Herein, possible model structure for such an enhancement
of classical reduction approaches through machine learning
are outlined and a recently published ANN-based compart-
ment model representing a prototype of these hybrid model
structures is discussed. The described model shows a good
performance in reproducing the same transient behavior as a
full-order model while substantially reducing computational
times. Nevertheless, several issues remain to be resolved, be-
fore such model structures become ready-to-use in industrial
applications. In particular, in absence of high-fidelity full-
order process models, there is a crucial dependence on data.
Consequently, the set-up of the reduced hybrid dynamic
models will require either many costly experiments or sig-
nificant disruptions of the operation of a process.

In the future, the advancement of digital twins might play a
crucial role by providing simulative decision-support through

detailed modeling. This means that high-fidelity full-order
dynamic models for processes might eventually become read-
ily available, allowing for generating accurate process data in-
silico without performing costly experiments or disrupting
the plant’s operation. Consequently, having digital twins as
standard would substantially facilitate hybrid mechanistic/
data-driven approaches to reduced dynamic modeling.
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Symbols used

e [–] residuals calculated using data-
driven model

t [s] time
u [–] system inputs
x [–] differential states of full-order

mechanistic model
x̂ [–] differential states of reduced hybrid

model
y [–] outputs of full-order mechanistic

model
ŷ [–] outputs of reduced hybrid model
~y [–] outputs of reduced-order

mechanistic model equations
z [–] algebraic states of full-order

mechanistic model
ẑ [–] algebraic states of reduced hybrid

model
~z [–] selected algebraic states in reduced-

order mechanistic model equations
calculated using data-driven model

Abbreviations

ANN artificial neural network
ASU air separation unit
DAE differential algebraic equation
GP Gaussian process
MESH mass balance, equilibrium, summation and heat

balance
MPC model predictive control
NMPC nonlinear model predictive control
PSE process systems engineering
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D. Bonvin, A. Caspari, P. Schäfer, Comput. Chem. Eng. 2018, 113,
209–221. DOI: https://doi.org/10.1016/j.compche-
meng.2018.03.013

[13] R. C. Pattison, C. R. Touretzky, T. Johansson, I. Harjunskoski,
M. Baldea, Ind. Eng. Chem. Res. 2016, 55 (16), 4562–4584. DOI:
https://doi.org/10.1021/acs.iecr.5b03499

[14] M. T. Kelley, R. C. Pattison, R. Baldick, M. Baldea, Appl. Energy
2018, 222, 951–966. DOI: https://doi.org/10.1016/j.ape-
nergy.2017.12.127

[15] C. Tsay, A. Kumar, J. Flores-Cerrillo, M. Baldea, Comput. Chem.
Eng. 2019, 126, 22–34. DOI: https://doi.org/10.1016/
j.compchemeng.2019.03.022

[16] J. Miller, W. L. Luyben, P. Belanger, S. Blouin, L. Megan, Ind. Eng.
Chem. Res. 2008, 47 (2), 394–404. DOI: https://doi.org/10.1021/
ie070975t

[17] Y. Cao, C. L. E. Swartz, M. Baldea, S. Blouin, J. Process Control
2015, 33, 67–48. DOI: https://doi.org/10.1016/j.jpro-
cont.2015.05.002
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