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Abstract 

Global optimization is desirable for the design of chemical and energy processes as design 

decisions have a significant influence on the economics. A relevant challenge for global 

flowsheet optimization is the incorporation of accurate thermodynamic models. A 

promising alternative to conventional thermodynamic property models is the integration 

of data-driven surrogate models into mechanistic process models and deterministic global 

optimization in a reduced space. In our previous works, we trained artificial neural 

networks (ANNs) on thermodynamic data and included the surrogate models in the global 

flowsheet optimization of subcritical organic Rankine cycles (ORC). In this work, we 

extend the framework to the optimization of transcritical ORCs operating at a 

supercritical high pressure level and subcritical low pressure level. We train separate 

ANNs for supercritical and subcritical thermodynamic properties. ANNs with a small 

number of neurons can learn the thermodynamic properties to sufficient accuracy. We 

identify the optimal working fluid among 122 available fluids in the thermodynamic 

library CoolProp via a deterministic global optimization of the hybrid process model 

using the solver MAiNGO. The results show that the process can be optimized efficiently 

and that transcritical operation can enable high power generation. 

Keywords: Surrogate model, Artificial neural networks, MAiNGO, Geothermal power, 

Supercritical properties 

1. Introduction 

Numerical optimization of the design and operation of energy processes using renewable 

energy resources is a key element for the transition to a carbon neutral economy. Making 

use of low-temperature power resources, such as geothermal brine, will become a relevant 

part of future power generation. However, the most relevant processes for this energy 

transformation, organic Rankine cycles (ORCs), often suffer from low thermal 

efficiencies. This is, among other effects, caused by the isothermal evaporation of the 

working fluid (WF), which results in high exergy destruction. One way to circumvent is 

the evaporation at supercritical pressure, i.e., at a pressure level higher than the critical 

pressure of the working fluid pc. Fluids at supercritical pressure levels exhibit different 

thermodynamic properties than at subcritical pressure.  

Supercritical pressure levels in ORCs have been investigated in many studies (Chen et 

al., 2006; Schuster et al., 2010; Gao et al., 2012). Most authors perform a variation of 
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process parameters to improve the performance (Shengjun et al., 2011; Yağlı et al., 2016; 

Xu et al., 2016) or apply a local optimization solver (Le et al., 2014; Maraver et al., 2014). 

Although rare, experimental investigations validated the potential advantages of 

operating ORCs at supercritical pressure (Kosmadakis et al., 2016). A review on 

transcritical ORC studies, experimental data, and existing plants is given by Lecompte et 

al. (2019). 

In our previous works (Schweidtmann et al., 2018; Huster et al., 2019a,b), we investigated 

the deterministic global optimization of ORCs employing pure fluids at subcritical 

pressure levels. Solving the optimization problem in a reduced-space using our in-house 

solver MAiNGO (Bongartz et al., 2018), we were able to illustrate the benefit of using 

surrogate models for the calculation of accurate thermodynamic properties. For this, we 

train artificial neural networks (ANNs) on subcritical thermodynamic data, which allow 

for an explicit model formulation. Together with tighter relaxations compared to the 

original thermodynamic equations, this drastically reduces CPU times (Schweidtmann 

and Mitsos, 2019; Schweidtmann et al., 2018). 

Surrogate models and ANNs have been discussed in engineering literature for decades 

(Wang, 2006; Himmelblau, 2000). Furthermore, ANNs have been employed for the 

prediction of supercritical fluid properties by several authors (Mehdizadeh and 

Movagharnejad, 2011; Eslamimanesh et al., 2011). Arslan and Yetik (2011) and Rashidi 

et al. (2011) used ANNs to learn ORC process models in a black-box approach and 

optimized these. The novelty of this work compared to earlier works is that ANNs have 

not been used for learning supercritical fluid properties and subsequently used in a hybrid 

model that is to be optimized to guaranteed global optimality. In this work, we apply 

ANNs for the prediction of supercritical fluid properties within an ORC process 

optimization. Further, we select the most promising fluid candidates among a wide range 

of fluids available in the thermodynamic library CoolProp (Bell et al., 2014). 

2. ORC process model 

We adopt the geothermal set up presented in (Huster et al., 2019a) and adjust the model 

to transcritical operation. Figure 1 shows the ORC flowsheet, indicating the super- and 

subcritical pressure levels. The models of the pump, expander and condenser are identical 

to (Huster et al., 2019a). We model the evaporator as a single process unit due to the 

continuous phase change and assume a constant heat transfer coefficient. The 

supercritical phase change requires constraining the minimum temperature difference 

along the heat transfer, similar to the use of WF mixtures (Huster et al., 2020). For this, 

the evaporator is discretized along its length. In each discretization cell, we introduce an 

inequality on the minimum temperature difference to avoid unphysical temperature 

crossover. When choosing ten cells or less in the process optimization, temperature 

crossovers occurred at the optimal solution point, resulting in a relaxed solution. To 

ensure sufficient temperature difference for all WF candidates, we choose 50 cells in all 

further optimizations. We found that the influence of cell number on the CPU time of the 

process optimization is almost linear between 10 and 100 cells, ranging from 95 to 632 s. 

This is summed over six cores that are used for the parallelized branch-and-bound 

algorithm. Further, we ensure that the expansion process does not cross the two-phase 

region by setting a lower bound for the specific entropy at the outlet of the evaporator, as 

illustrated in Figure 2. For the lower bound of the high pressure level pHP, we select 1.1·pc. 

This avoids pressure levels close to or below the critical point, which requires different 

models to account for the two-phase region. 
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3. Method 

CoolProp (Bell et al., 2014) provides accurate thermodynamic equations of state for 122 

fluids. Many of these fluids are not suitable for the presented case study due to their 

thermodynamic properties. Thus, we only consider WF candidates that can be evaporated 

at supercritical pressure and condensed at the present conditions. We apply the following 

rigorous feasibility preselection criteria to all 122 fluids in CoolProp: critical temperature 

Tc < 400 K, saturation temperature at a pressure of 10 bar T|sat
10 bar > 260 K. For the 

preselected fluids, we perform an automated data generation using CoolProp, which we 

extend to transcritical properties. The procedure for subcritical properties is described in 

more detail in (Huster et al., 2019b). For supercritical properties, we generate 105 data 

points. We perform the ANN training in Matlab R2018b using the Bayesian 

backpropagation algorithm, 700 training epochs, and randomly split the data into 40% 

training data, 30% validation data, and 30% test data. In the training procedure, we 

minimize the mean-squared error (MSE) on the training data. We optimize the resulting 

hybrid model using our open-source deterministic global optimization solver MAiNGO 

(Bongartz et al., 2018). 

4. Results 

4.1. Artificial neural network accuracy 

Table 1 shows that ANNs can learn temperature T as a function of pressure p and mass-

specific enthalpy h in the supercritical region with high accuracy. Based on these results 

and desirable accuracy (Huster et al., 2019a), we select six neurons for both hidden layers 

for supercritical properties. For subcritical properties, we also select two hidden layers 

with six neurons each (Huster et al., 2019a,b).  

Table 1: Mean-squared errors of the ANNs on the training data for the supercritical region, in 

dependence of the number of neurons in both hidden layers (input variables: p, h; output variable: 

T; fluid: RC318). 

Number of neurons 5 6 7 8 9 10 

MSE [K2] 5.3·10-8 6.0·10-9 6.1·10-9 1.1·10-10 4.7·10-10 1.4·10-10 

Figure 2: Lower bound for the minimum 

specific entropy of RC-318  (purple dashed line) 

for the superheated state at the expander inlet. 

Orange lines indicate isobars, the blue dash-

dotted line indicates the two-phase region. 

Figure 1: Flowsheet of the transcritical ORC. 

The circled numbers indicate fluid states. 

Above the dashed line, the process operates at 

supercritical pressure, below at subcritical 

pressure. 
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4.2. Process optimization results 

The process optimization results of the five fluids with the highest net power generation 

Pnet (Table 2) show that transcritical operation allows for much higher net power 

generation than using isobutane at subcritical conditions (Pnet,max = 16.5 MW, (Huster et 

al., 2019a)). However, no general claim can be made as we have not performed the WF 

selection procedure for subcritical operation for this case study. We give p* as the ratio of 

high pressure level and critical pressure (p* = pHP/pc), and the thermal efficiency ηth. Aside 

from high power generation in the turbine Pturb, high values of pHP also strongly increase 

power consumption in the pump Ppump and investment costs Inv respectively levelized 

cost of electricity LCOE. The CPU times are between 2·102 and 2·104 s. Using six CPU 

cores, this corresponds to less than one hour of wall time. Five of the 21 preselected fluid 

candidates are infeasible. 

Table 2: Results of the thermodynamic optimization for the five WF candidates with the highest 

Pnet, sorted by decreasing Pnet. 

Fluid ṁWF pHP pLP Pnet Ppump ηth Inv LCOE p* 

 [kg/s] [bar] [bar] [MW] [MW] [%] [m US-$] [US-$/MWh] [-] 

R507A 17.2 65.2 15.8 25.5 10.3 9.1 51.4 57.3 1.8 

R125 20.7 71.8 16.9 25.5 12.2 8.8 53.3 59.5 2.0 

R143a 14.5 62.2 15.5 25.4 9.3 9.3 50.1 56.3 1.7 

R404A 16.7 64.1 15.5 25.4 9.9 9.1 50.9 57.1 1.7 

R227EA 20.9 31.9 5.8 25.3 5.0 9.2 46.0 52.1 1.1 

 

The thermoeconomic optimization, i.e., minimization of LCOE, takes the investment cost 

of the process units into account. The results reflect the increased cost of operating at high 

pressure levels (Table 3). For four of the five given WF candidates, operating the ORC at 

p* = 1.1 is economically favorable. As this is the lower bound for pHP of each respective 

WF, the results suggest that subcritical operation could be the most economic option. The 

CPU times for the thermoeconomic optimizations are between 3·102 and 4·104 s, summed 

over all cores. Although the CPU times are higher compared to the thermodynamic 

optimization, they are still viable for process design.  

Table 3: Results of the thermoeconomic optimization for the five WF candidates with the lowest 

LCOE, sorted by increasing LCOE. 

 

The T-Q-plots for the best-performing WFs of the thermodynamic and thermoeconomic 

optimization are given in Figure 3. For Pnet,max, the temperature curve is almost parallel 

along the evaporator, which comes close to minimum exergy destruction. This is not the 

case for LCOEmin, and higher temperature differences between heat source and WF occur. 

Like this, the HX investment cost is reduced due to the decreased area and a smaller 

pressure factor. 

 

 

Fluid ṁWF pHP pLP Pnet Ppump ηth Inv LCOE p* 

 [kg/s] [bar] [bar] [MW] [MW] [%] [m US-$] [US-$/MWh] [-] 

R227EA 19.9 31.9 6.2 24.6 4.7 9.4 44.2 51.5 1.1 

R1234yf 14.1 36.8 9.0 23.4 4.6 9.5 43.0 52.6 1.1 

Propylene 5.7 49.6 14.8 22.5 5.0 10.1 42.8 54.4 1.1 

R143a 13.5 55.6 16.1 25.0 7.4 9.3 47.8 54.8 1.5 

n-Propane 5.4 46.3 12.3 21.7 4.8 10.3 41.6 54.8 1.1 
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5. Conclusion and outlook  

We propose an approach for globally optimal WF selection and process design for 

transcritical ORCs. For this, we train ANNs on accurate supercritical thermodynamic data 

and subsequently integrate them into a mechanistic process model. We solve the resulting 

hybrid model using the deterministic global solver MAiNGO. We identify the optimal 

WF among 122 fluids that are available in CoolProp. 

We show that ANNs with a small number of neurons (two hidden layers with six neurons 

each) can learn supercritical data with high accuracy, which is comparable to subcritical 

data. The thermodynamic optimization reveals the potential of operating ORC at 

supercritical pressure levels. The nonisothermal evaporation allows to adjust the slope of 

the evaporation curve towards the heat source, approaching minimal exergy destruction 

in the evaporation. In contrast, the thermoeconomic optimization can lower investment 

costs significantly for similar net power generation. All optimizations can be solved to 

global optimality within less than two hours of wall time using six CPU cores. This 

demonstrates the viability of the proposed approach. 

Future work includes the optimization of more detailed models with heat transfer 

correlations embedded. It would further be relevant to take the influence of fluid stability 

at high pressure levels and environmental fluid properties into account. 
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