001     888869
005     20210304134011.0
024 7 _ |a 10.1002/vzj2.20082
|2 doi
024 7 _ |a 2128/26601
|2 Handle
024 7 _ |a altmetric:95558521
|2 altmetric
024 7 _ |a WOS:000618773300075
|2 WOS
037 _ _ |a FZJ-2020-05279
082 _ _ |a 550
100 1 _ |a Ehosioke, Solomon
|0 P:(DE-Juel1)172828
|b 0
|e Corresponding author
245 _ _ |a Sensing the electrical properties of roots: A review
260 _ _ |a Hoboken, NJ
|c 2020
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1609245985_10540
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Thorough knowledge of root system functioning is essential to understand the feedback loops between plants, soil, and climate. In situ characterization of root systems is challenging due to the inaccessibility of roots and the complexity of root zone processes. Electrical methods have been proposed to overcome these difficulties. Electrical conduction and polarization occur in and around roots, but the mechanisms are not yet fully understood. We review the potential and limitations of low‐frequency electrical techniques for root zone investigation, discuss the mechanisms behind electrical conduction and polarization in the soil–root continuum, and address knowledge gaps. A range of electrical methods for root investigation is available. Reported methods using current injection in the plant stem to assess the extension of the root system lack robustness. Multi‐electrode measurements are increasingly used to quantify root zone processes through soil moisture changes. They often neglect the influence of root biomass on the electrical signal, probably because it is yet to be well understood. Recent research highlights the potential of frequency‐dependent impedance measurements. These methods target both surface and volumetric properties by activating and quantifying polarization mechanisms occurring at the root segment and cell scale at specific frequencies. The spectroscopic approach opens up a range of applications. Nevertheless, understanding electrical signatures at the field scale requires significant understanding of small‐scale polarization and conduction mechanisms. Improved mechanistic soil–root electrical models, validated with small‐scale electrical measurements on root systems, are necessary to make further progress in ramping up the precision and accuracy of multi‐electrode tomographic techniques for root zone investigation.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Nguyen, Frédéric
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rao, Sathyanarayan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kremer, Thomas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Placencia‐Gomez, Edmundo
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Huisman, Johan Alexander
|0 P:(DE-Juel1)129472
|b 5
|u fzj
700 1 _ |a Kemna, Andreas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Javaux, Mathieu
|0 P:(DE-Juel1)129477
|b 7
|u fzj
700 1 _ |a Garre, Sarah
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1002/vzj2.20082
|g Vol. 19, no. 1
|0 PERI:(DE-600)2088189-7
|n 1
|p e20082
|t Vadose zone journal
|v 19
|y 2020
|x 1539-1663
856 4 _ |u https://juser.fz-juelich.de/record/888869/files/%5B134%5DEhosioke2020.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888869
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-Juel1)172828
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129472
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129477
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Terrestrial Systems: From Observation to Prediction
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2018
|d 2020-08-28
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-08-28
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21