000888871 001__ 888871
000888871 005__ 20240712112853.0
000888871 0247_ $$2doi$$a10.1177/0003702820973275
000888871 0247_ $$2ISSN$$a0003-7028
000888871 0247_ $$2ISSN$$a1943-3530
000888871 0247_ $$2Handle$$a2128/27930
000888871 0247_ $$2pmid$$a33107761
000888871 0247_ $$2WOS$$aWOS:000648987200002
000888871 0247_ $$2datacite_doi$$a10.34734/FZJ-2020-05281
000888871 037__ $$aFZJ-2020-05281
000888871 082__ $$a610
000888871 1001_ $$0P:(DE-HGF)0$$aEchtermeyer, Alexander$$b0
000888871 245__ $$aInline Raman Spectroscopy and Indirect Hard Modeling for Concentration Monitoring of Dissociated Acid Species
000888871 260__ $$aLondon$$bSage$$c2021
000888871 3367_ $$2DRIVER$$aarticle
000888871 3367_ $$2DataCite$$aOutput Types/Journal article
000888871 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1690446014_9716
000888871 3367_ $$2BibTeX$$aARTICLE
000888871 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888871 3367_ $$00$$2EndNote$$aJournal Article
000888871 520__ $$aWe propose an approach for monitoring the concentration of dissociated carboxylic acid species in dilute aqueous solution. The dissociated acid species are quantified employing inline Raman spectroscopy in combination with indirect hard modeling (IHM) and multivariate curve resolution (MCR). We introduce two different titration-based hard model (HM) calibration procedures for a single mono- or polyprotic acid in water with well-known (method A) or unknown (method B) acid dissociation constants pKa. In both methods, spectra of only one acid species in water are prepared for each acid species. These spectra are used for the construction of HMs. For method A, the HMs are calibrated with calculated ideal dissociation equilibria. For method B, we estimate pKa values by fitting ideal acid dissociation equilibria to acid peak areas that are obtained from a spectral HM. The HM in turn is constructed on the basis of MCR data. Thus, method B on the basis of IHM is independent of a priori known pKa values, but instead provides them as part of the calibration procedure. As a detailed example, we analyze itaconic acid in aqueous solution. For all acid species and water, we obtain low HM errors of < 2.87 × 10−4mol mol−1 in the cases of both methods A and B. With only four calibration samples, IHM yields more accurate results than partial least squares regression. Furthermore, we apply our approach to formic, acetic, and citric acid in water, thereby verifying its generalizability as a process analytical technology for quantitative monitoring of processes containing carboxylic acids.
000888871 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000888871 588__ $$aDataset connected to CrossRef
000888871 7001_ $$0P:(DE-HGF)0$$aMarks, Caroline$$b1
000888871 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b2$$ufzj
000888871 7001_ $$0P:(DE-HGF)0$$aViell, Jörn$$b3$$eCorresponding author
000888871 773__ $$0PERI:(DE-600)1474251-2$$a10.1177/0003702820973275$$gp. 000370282097327 -$$n5$$p506–519$$tApplied spectroscopy$$v75$$x1943-3530$$y2021
000888871 8564_ $$uhttps://juser.fz-juelich.de/record/888871/files/0003702820973275.pdf$$yRestricted
000888871 8564_ $$uhttps://juser.fz-juelich.de/record/888871/files/Echtermeyer%20et%20int.%20Viell%202020%20Appl%20Spectr.pdf$$yOpenAccess
000888871 909CO $$ooai:juser.fz-juelich.de:888871$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888871 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000888871 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000888871 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b2$$kFZJ
000888871 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b2$$kRWTH
000888871 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000888871 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000888871 9130_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000888871 9141_ $$y2021
000888871 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000888871 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29
000888871 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-29
000888871 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-29
000888871 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-29
000888871 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL SPECTROSC : 2018$$d2020-08-29
000888871 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz$$d2020-08-29$$wger
000888871 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-29
000888871 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29
000888871 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-29
000888871 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888871 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-29
000888871 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-29
000888871 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-29
000888871 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29
000888871 920__ $$lyes
000888871 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000888871 9801_ $$aFullTexts
000888871 980__ $$ajournal
000888871 980__ $$aVDB
000888871 980__ $$aUNRESTRICTED
000888871 980__ $$aI:(DE-Juel1)IEK-10-20170217
000888871 981__ $$aI:(DE-Juel1)ICE-1-20170217