001     888871
005     20240712112853.0
024 7 _ |a 10.1177/0003702820973275
|2 doi
024 7 _ |a 0003-7028
|2 ISSN
024 7 _ |a 1943-3530
|2 ISSN
024 7 _ |a 2128/27930
|2 Handle
024 7 _ |a 33107761
|2 pmid
024 7 _ |a WOS:000648987200002
|2 WOS
024 7 _ |a 10.34734/FZJ-2020-05281
|2 datacite_doi
037 _ _ |a FZJ-2020-05281
082 _ _ |a 610
100 1 _ |a Echtermeyer, Alexander
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Inline Raman Spectroscopy and Indirect Hard Modeling for Concentration Monitoring of Dissociated Acid Species
260 _ _ |a London
|c 2021
|b Sage
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1690446014_9716
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We propose an approach for monitoring the concentration of dissociated carboxylic acid species in dilute aqueous solution. The dissociated acid species are quantified employing inline Raman spectroscopy in combination with indirect hard modeling (IHM) and multivariate curve resolution (MCR). We introduce two different titration-based hard model (HM) calibration procedures for a single mono- or polyprotic acid in water with well-known (method A) or unknown (method B) acid dissociation constants pKa. In both methods, spectra of only one acid species in water are prepared for each acid species. These spectra are used for the construction of HMs. For method A, the HMs are calibrated with calculated ideal dissociation equilibria. For method B, we estimate pKa values by fitting ideal acid dissociation equilibria to acid peak areas that are obtained from a spectral HM. The HM in turn is constructed on the basis of MCR data. Thus, method B on the basis of IHM is independent of a priori known pKa values, but instead provides them as part of the calibration procedure. As a detailed example, we analyze itaconic acid in aqueous solution. For all acid species and water, we obtain low HM errors of < 2.87 × 10−4mol mol−1 in the cases of both methods A and B. With only four calibration samples, IHM yields more accurate results than partial least squares regression. Furthermore, we apply our approach to formic, acetic, and citric acid in water, thereby verifying its generalizability as a process analytical technology for quantitative monitoring of processes containing carboxylic acids.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Marks, Caroline
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 2
|u fzj
700 1 _ |a Viell, Jörn
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.1177/0003702820973275
|g p. 000370282097327 -
|0 PERI:(DE-600)1474251-2
|n 5
|p 506–519
|t Applied spectroscopy
|v 75
|y 2021
|x 1943-3530
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/888871/files/0003702820973275.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888871/files/Echtermeyer%20et%20int.%20Viell%202020%20Appl%20Spectr.pdf
909 C O |o oai:juser.fz-juelich.de:888871
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
913 0 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL SPECTROSC : 2018
|d 2020-08-29
915 _ _ |a Allianz-Lizenz
|0 StatID:(DE-HGF)0410
|2 StatID
|d 2020-08-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21