000888872 001__ 888872
000888872 005__ 20240712112853.0
000888872 0247_ $$2doi$$a10.1016/j.compchemeng.2020.107163
000888872 0247_ $$2ISSN$$a0098-1354
000888872 0247_ $$2ISSN$$a1873-4375
000888872 0247_ $$2Handle$$a2128/26772
000888872 0247_ $$2WOS$$aWOS:000608130700019
000888872 037__ $$aFZJ-2020-05282
000888872 082__ $$a660
000888872 1001_ $$0P:(DE-HGF)0$$aSchulze, Jan C.$$b0
000888872 245__ $$aNonlinear model predictive control of ultra-high-purity air separation units using transient wave propagation model
000888872 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000888872 3367_ $$2DRIVER$$aarticle
000888872 3367_ $$2DataCite$$aOutput Types/Journal article
000888872 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639555050_11080
000888872 3367_ $$2BibTeX$$aARTICLE
000888872 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888872 3367_ $$00$$2EndNote$$aJournal Article
000888872 520__ $$aModel reduction techniques can be used to reduce the computational burden associated with nonlinear model predictive control (NMPC). In our recent work, we introduced the transient nonlinear wave propagation model (TWPM) for reduced dynamic modeling of multi-component distillation columns with variable holdup, and demonstrated its suitability for optimization and control of single-section distillation columns and simple air separation units [Caspari et al., J. Process Control, 2020]. We show here that the TWPM is well-suited for reduced modeling of multi-sectional ultra-high-purity distillation columns and enables real-time capable NMPC of complex process flowsheets with tight operational constraints. To demonstrate its performance and accuracy, we apply the TWPM for NMPC of an ultra-high-purity nitrogen air separation unit. We perform an in-silico closed-loop case study comprising a series of load changes. Our approach reduces CPU time by 84%, enabling NMPC in real time.
000888872 536__ $$0G:(DE-HGF)POF4-1122$$a1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)$$cPOF4-112$$fPOF IV$$x0
000888872 588__ $$aDataset connected to CrossRef
000888872 7001_ $$0P:(DE-HGF)0$$aCaspari, Adrian$$b1
000888872 7001_ $$0P:(DE-HGF)0$$aOffermanns, Christoph$$b2
000888872 7001_ $$0P:(DE-HGF)0$$aMhamdi, Adel$$b3
000888872 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b4$$eCorresponding author$$ufzj
000888872 773__ $$0PERI:(DE-600)1499971-7$$a10.1016/j.compchemeng.2020.107163$$gp. 107163 -$$p107163$$tComputers & chemical engineering$$v145$$x0098-1354$$y2021
000888872 8564_ $$uhttps://juser.fz-juelich.de/record/888872/files/Schulze%202020%20-%20Nonlinear%20Model%20Predictive%20Control%20of%20Ultra-High-Purity%20Air%20Separation%20Units.pdf$$yOpenAccess
000888872 909CO $$ooai:juser.fz-juelich.de:888872$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888872 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000888872 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000888872 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000888872 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000888872 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b4$$kFZJ
000888872 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b4$$kRWTH
000888872 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1122$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
000888872 9141_ $$y2021
000888872 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-09
000888872 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-09
000888872 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-09
000888872 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-09
000888872 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT CHEM ENG : 2018$$d2020-09-09
000888872 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-09
000888872 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-09
000888872 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-09
000888872 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888872 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-09
000888872 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-09
000888872 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-09
000888872 920__ $$lyes
000888872 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000888872 9801_ $$aFullTexts
000888872 980__ $$ajournal
000888872 980__ $$aVDB
000888872 980__ $$aI:(DE-Juel1)IEK-10-20170217
000888872 980__ $$aUNRESTRICTED
000888872 981__ $$aI:(DE-Juel1)ICE-1-20170217