001     888872
005     20240712112853.0
024 7 _ |a 10.1016/j.compchemeng.2020.107163
|2 doi
024 7 _ |a 0098-1354
|2 ISSN
024 7 _ |a 1873-4375
|2 ISSN
024 7 _ |a 2128/26772
|2 Handle
024 7 _ |a WOS:000608130700019
|2 WOS
037 _ _ |a FZJ-2020-05282
082 _ _ |a 660
100 1 _ |a Schulze, Jan C.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Nonlinear model predictive control of ultra-high-purity air separation units using transient wave propagation model
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639555050_11080
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Model reduction techniques can be used to reduce the computational burden associated with nonlinear model predictive control (NMPC). In our recent work, we introduced the transient nonlinear wave propagation model (TWPM) for reduced dynamic modeling of multi-component distillation columns with variable holdup, and demonstrated its suitability for optimization and control of single-section distillation columns and simple air separation units [Caspari et al., J. Process Control, 2020]. We show here that the TWPM is well-suited for reduced modeling of multi-sectional ultra-high-purity distillation columns and enables real-time capable NMPC of complex process flowsheets with tight operational constraints. To demonstrate its performance and accuracy, we apply the TWPM for NMPC of an ultra-high-purity nitrogen air separation unit. We perform an in-silico closed-loop case study comprising a series of load changes. Our approach reduces CPU time by 84%, enabling NMPC in real time.
536 _ _ |a 1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)
|0 G:(DE-HGF)POF4-1122
|c POF4-112
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Caspari, Adrian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Offermanns, Christoph
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mhamdi, Adel
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.compchemeng.2020.107163
|g p. 107163 -
|0 PERI:(DE-600)1499971-7
|p 107163
|t Computers & chemical engineering
|v 145
|y 2021
|x 0098-1354
856 4 _ |u https://juser.fz-juelich.de/record/888872/files/Schulze%202020%20-%20Nonlinear%20Model%20Predictive%20Control%20of%20Ultra-High-Purity%20Air%20Separation%20Units.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888872
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1122
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT CHEM ENG : 2018
|d 2020-09-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21