000888893 001__ 888893
000888893 005__ 20210130011154.0
000888893 0247_ $$2doi$$a10.1103/PhysRevResearch.2.013177
000888893 0247_ $$2Handle$$a2128/26572
000888893 0247_ $$2altmetric$$aaltmetric:76460396
000888893 0247_ $$2WOS$$aWOS:000602495200005
000888893 037__ $$aFZJ-2020-05298
000888893 082__ $$a530
000888893 1001_ $$0P:(DE-Juel1)178993$$aGo, Dongwook$$b0
000888893 245__ $$aOrbital torque: Torque generation by orbital current injection
000888893 260__ $$aCollege Park, MD$$bAPS$$c2020
000888893 3367_ $$2DRIVER$$aarticle
000888893 3367_ $$2DataCite$$aOutput Types/Journal article
000888893 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1608132006_1985
000888893 3367_ $$2BibTeX$$aARTICLE
000888893 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888893 3367_ $$00$$2EndNote$$aJournal Article
000888893 520__ $$aWe propose a mechanism of torque generation by injection of an orbital current, which we call orbital torque. In a magnetic bilayer consisting of a nonmagnet (NM) and a ferromagnet (FM), we consider a situation where the spin-orbit coupling (SOC) is present only in the FM. Although the SOC is absent in the NM, the orbital Hall effect can arise in the NM. When the resulting orbital Hall current is injected to the FM, the SOC of the FM converts the orbital angular momentum into spin, which exerts torque to the magnetization of the FM. Remarkably, even for small SOC strength comparable to that of 3d FMs, the orbital torque can be comparable to the spin torque induced by the spin Hall effect of the NM with strong SOC. This provides a way to experimentally probe the OHE and opens a venue to achieving spin-torque devices based on light elements that exhibit gigantic orbital response. Experimental implications are discussed.
000888893 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000888893 588__ $$aDataset connected to CrossRef
000888893 7001_ $$0P:(DE-HGF)0$$aLee, Hyun-Woo$$b1$$eCorresponding author
000888893 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.2.013177$$gVol. 2, no. 1, p. 013177$$n1$$p013177$$tPhysical review research$$v2$$x2643-1564$$y2020
000888893 8564_ $$uhttps://juser.fz-juelich.de/record/888893/files/PhysRevResearch.2.013177.pdf$$yOpenAccess
000888893 909CO $$ooai:juser.fz-juelich.de:888893$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178993$$aForschungszentrum Jülich$$b0$$kFZJ
000888893 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000888893 9141_ $$y2020
000888893 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888893 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000888893 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888893 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000888893 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000888893 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000888893 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000888893 980__ $$ajournal
000888893 980__ $$aVDB
000888893 980__ $$aUNRESTRICTED
000888893 980__ $$aI:(DE-Juel1)IAS-1-20090406
000888893 980__ $$aI:(DE-Juel1)PGI-1-20110106
000888893 980__ $$aI:(DE-82)080009_20140620
000888893 980__ $$aI:(DE-82)080012_20140620
000888893 9801_ $$aFullTexts