000888910 001__ 888910
000888910 005__ 20210401192809.0
000888910 0247_ $$2doi$$a10.1103/PhysRevLett.125.097202
000888910 0247_ $$2ISSN$$a0031-9007
000888910 0247_ $$2ISSN$$a1079-7114
000888910 0247_ $$2ISSN$$a1092-0145
000888910 0247_ $$2Handle$$a2128/26615
000888910 0247_ $$2altmetric$$aaltmetric:59333878
000888910 0247_ $$2pmid$$a32915616
000888910 0247_ $$2WOS$$aWOS:000562322000007
000888910 037__ $$aFZJ-2020-05315
000888910 082__ $$a530
000888910 1001_ $$00000-0002-5117-8576$$aJeong, Jaehong$$b0$$eCorresponding author
000888910 245__ $$aMagnetization Density Distribution of Sr 2 IrO 4 : Deviation from a Local j eff = 1 / 2 Picture
000888910 260__ $$aCollege Park, Md.$$bAPS$$c2020
000888910 3367_ $$2DRIVER$$aarticle
000888910 3367_ $$2DataCite$$aOutput Types/Journal article
000888910 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617217043_32719
000888910 3367_ $$2BibTeX$$aARTICLE
000888910 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888910 3367_ $$00$$2EndNote$$aJournal Article
000888910 520__ $$a5d iridium oxides are of huge interest due to the potential for new quantum states driven by strong spin-orbit coupling. The strontium iridate Sr2IrO4is particularly in the spotlight because of the so-called jeff=1/2 state consisting of a quantum superposition of the three local t2g orbitals with, in its simplest version, nearly equal populations, which stabilizes an unconventional Mott insulating state. Here, we reportan anisotropic and aspherical magnetization density distribution measured by polarized neutron diffractionin a magnetic field up to 5 T at 4 K, which strongly deviates from a local jeff=1/2 picture even when distortion-induced deviations from the equal weights of the orbital populations are taken into account. Once reconstructed by the maximum entropy method and multipole expansion model refinement, the magnetization density shows four cross-shaped positive lobes along the crystallographic tetragonal axes with a large spatial extent, showing that the xy-orbital contribution is dominant.The analogy to the superconducting copper oxide systems might then be weaker than commonly thought.
000888910 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x0
000888910 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000888910 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x2
000888910 588__ $$aDataset connected to CrossRef
000888910 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000888910 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x1
000888910 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000888910 693__ $$0EXP:(DE-MLZ)POLI-HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)POLI-HEIDI-20140101$$6EXP:(DE-MLZ)SR9a-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePOLI: Polarized hot neutron diffractometer$$fSR9a$$x0
000888910 7001_ $$00000-0002-6720-8960$$aLenz, Benjamin$$b1
000888910 7001_ $$0P:(DE-HGF)0$$aGukasov, Arsen$$b2
000888910 7001_ $$0P:(DE-HGF)0$$aFabrèges, Xavier$$b3
000888910 7001_ $$0P:(DE-Juel1)164291$$aSazonov, Andrew$$b4
000888910 7001_ $$0P:(DE-Juel1)164298$$aHutanu, Vladimir$$b5
000888910 7001_ $$0P:(DE-HGF)0$$aLouat, Alex$$b6
000888910 7001_ $$0P:(DE-HGF)0$$aBounoua, Dalila$$b7
000888910 7001_ $$0P:(DE-HGF)0$$aMartins, Cyril$$b8
000888910 7001_ $$0P:(DE-HGF)0$$aBiermann, Silke$$b9
000888910 7001_ $$0P:(DE-HGF)0$$aBrouet, Véronique$$b10
000888910 7001_ $$0P:(DE-HGF)0$$aSidis, Yvan$$b11
000888910 7001_ $$00000-0001-9494-0789$$aBourges, Philippe$$b12$$eCorresponding author
000888910 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.125.097202$$gVol. 125, no. 9, p. 097202$$n9$$p097202$$tPhysical review letters$$v125$$x1079-7114$$y2020
000888910 8564_ $$uhttps://juser.fz-juelich.de/record/888910/files/PhysRevLett.125.097202.pdf$$yOpenAccess
000888910 8564_ $$uhttps://juser.fz-juelich.de/record/888910/files/accepted%20archive.pdf$$yOpenAccess
000888910 909CO $$ooai:juser.fz-juelich.de:888910$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000888910 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a LLB Saclay$$b2
000888910 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)164298$$aRWTH Aachen$$b5$$kRWTH
000888910 9101_ $$0I:(DE-HGF)0$$60000-0001-9494-0789$$a LLB, Saclay$$b12
000888910 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000888910 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000888910 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x2
000888910 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000888910 9141_ $$y2020
000888910 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32
000888910 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000888910 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-08-32
000888910 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-32
000888910 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000888910 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2018$$d2020-08-32
000888910 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2018$$d2020-08-32
000888910 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000888910 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000888910 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000888910 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888910 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2020-08-32
000888910 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-32
000888910 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32
000888910 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-32$$wger
000888910 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-32
000888910 920__ $$lno
000888910 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000888910 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000888910 980__ $$ajournal
000888910 980__ $$aVDB
000888910 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000888910 980__ $$aI:(DE-588b)4597118-3
000888910 980__ $$aUNRESTRICTED
000888910 9801_ $$aFullTexts