000888911 001__ 888911
000888911 005__ 20230111074306.0
000888911 0247_ $$2Handle$$a2128/27206
000888911 037__ $$aFZJ-2020-05316
000888911 041__ $$aGerman
000888911 088__ $$2Other$$aJül-4426
000888911 1001_ $$0P:(DE-Juel1)171718$$aGiesen, Kai$$b0$$eCorresponding author$$gmale$$ufzj
000888911 245__ $$aRadiochemische Separation von $^{45}$Ti und $^{52}$gMn zur Herstellung radiomarkierter Komplexe$$f- 2020-10-19
000888911 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2020
000888911 300__ $$aIX, 166 S.
000888911 3367_ $$2DataCite$$aOutput Types/Dissertation
000888911 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000888911 3367_ $$2ORCID$$aDISSERTATION
000888911 3367_ $$2BibTeX$$aPHDTHESIS
000888911 3367_ $$02$$2EndNote$$aThesis
000888911 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1613743868_5811
000888911 3367_ $$2DRIVER$$adoctoralThesis
000888911 4900_ $$aBerichte des Forschungszentrums Jülich$$v4426
000888911 502__ $$aUniversität Köln, Diss., 2020$$bDissertation$$cUniversität Köln$$d2020
000888911 520__ $$aWith regard to special diagnostic applications, non-standard radionuclides often represent suitable alternatives to standard radionuclides like $\textit{11}$C and $\textit{18}$F due to their physical decay characteristics such as half-life (t$_{1/2}$) and decay modes. Furthermore, non-standard positron emission tomography (PET) nuclides enable a novel design and synthesis of specific PET tracers to study a variety of biological processes. However, their clinical application in diagnostics is hampered by their limited availability owing to the lack of suitable radiochemical separation techniques. The positron emitter $^{45}$Ti (t$_{½}$: 3.1 h, I$_{β+}$ = 84.8 %, E$_{β+max}$ = 439 keV) is of high importance for imaging studies since Ti-complexes have shown therapeutic efficacy in cancertreatment as cytostatic agents. $^{45}$Ti can be easily produced at a small cyclotron by proton bombardment of a Sc target via the $^{45}$Sc(p,n)$^{45}$Ti nuclear reaction. Unfortunately, efficient separation methods to isolate $^{45}$Ti from the irradiated targetare still missing. Therefore, this work aimed to develop a novel separation technique to obtain $^{45}$Ti in high purity and radiochemical yield. The separation method was based on a thermochromatographic approach via the formation of volatile [$^{45}$Ti]TiCl$_{4}$ in a chlorine gas stream, enabling the separation from low volatile ScCl$_{3}$. The separation apparatus and the individual steps were adjusted to enable trapping of [$^{45}$Ti]Cl$_{4}$ for further chemical conversions. The most relevant separation parameters like reaction temperature, volume flow, separation time, and chlorine concentration in the carrier gas were optimized to achieve efficient formation and trapping of [$^{45}$Ti]TiCl$_{4}$ in high separation yields. Finally, [$^{45}$Ti]TiCl$_{4}$ was obtained with a recovery yield of 76% ± 5%(n=5) (n.d.c. 48% ± 3% (n=5)) and a radionuclidic purity of >99%, facilitating subsequent labeling steps. To this end, [$^{45}$Ti]TiCl$_{4}$ was reacted with the complex ligand H$_{4}$(2,4-salan) [6,6'- ((ethane-1,2-diylbis((2-hydroxyethyl)azanediyl))-bis(methylene))-bis(2,4-dimethylphenol)] or with H$_{4}$(3,4-salane) [6,6'-((ethane-1,2-diylbis((2-ydroxyethyl)azanediyl))- bis(methylene))bis(3,4-dimethyl-phenol)] in THF to form the corresponding $^{45}$Ti complexes. Thus, [$^{45}$Ti][Ti(2,4-salan)] and [$^{45}$Ti][Ti(3,4-salan)] were afforded in radiochemical yields of 15% ± 7% (n=7) and 13% ± 6% (n=3), respectively. Furthermore, [$^{45}$Ti][Ti(HBED)] was obtained from [$^{45}$Ti]TiCl$_{4}$ by reaction with the chelator N,N-bis(2-hydroxybenzyl)ethylenediamine-N,N-diacetic acid (HBED). [...]
000888911 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000888911 8564_ $$uhttps://juser.fz-juelich.de/record/888911/files/J%C3%BCl_4426_Giesen.pdf$$yOpenAccess
000888911 909CO $$ooai:juser.fz-juelich.de:888911$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888911 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888911 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171718$$aForschungszentrum Jülich$$b0$$kFZJ
000888911 9130_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000888911 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000888911 9141_ $$y2021
000888911 920__ $$lyes
000888911 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0
000888911 980__ $$aphd
000888911 980__ $$aVDB
000888911 980__ $$aUNRESTRICTED
000888911 980__ $$abook
000888911 980__ $$aI:(DE-Juel1)INM-5-20090406
000888911 9801_ $$aFullTexts