000888916 001__ 888916
000888916 005__ 20230426083225.0
000888916 0247_ $$2doi$$a10.1103/PhysRevB.101.064425
000888916 0247_ $$2ISSN$$a0163-1829
000888916 0247_ $$2ISSN$$a0556-2805
000888916 0247_ $$2ISSN$$a1050-2947
000888916 0247_ $$2ISSN$$a1094-1622
000888916 0247_ $$2ISSN$$a1095-3795
000888916 0247_ $$2ISSN$$a1098-0121
000888916 0247_ $$2ISSN$$a1538-4446
000888916 0247_ $$2ISSN$$a1538-4489
000888916 0247_ $$2ISSN$$a1550-235X
000888916 0247_ $$2ISSN$$a2469-9950
000888916 0247_ $$2ISSN$$a2469-9969
000888916 0247_ $$2ISSN$$a2469-9977
000888916 0247_ $$2Handle$$a2128/26620
000888916 0247_ $$2altmetric$$aaltmetric:75105839
000888916 0247_ $$2WOS$$aWOS:000515628700004
000888916 037__ $$aFZJ-2020-05321
000888916 082__ $$a530
000888916 1001_ $$00000-0003-3289-9527$$aZobkalo, I. A.$$b0$$eFirst author
000888916 245__ $$aDirect control of magnetic chirality in NdM n 2 O 5 by external electric field
000888916 260__ $$aWoodbury, NY$$bInst.$$c2020
000888916 3367_ $$2DRIVER$$aarticle
000888916 3367_ $$2DataCite$$aOutput Types/Journal article
000888916 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617216875_31153
000888916 3367_ $$2BibTeX$$aARTICLE
000888916 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888916 3367_ $$00$$2EndNote$$aJournal Article
000888916 520__ $$aDetailed investigation of the incommensurate magnetic ordering in a single crystal of multiferroic NdMn2O5 has been performed using both nonpolarized and polarized neutron-diffraction techniques. Below TN≈30.5K magnetic Bragg reflections corresponding to the nonchiral-type magnetic structure with propagation vector k1=(0.50kz1) occurs. Below about 27 K a distorted magnetic modulation with a similar vector kz2 occurs, which is attributed to the magnetization of the Nd3+ ions by the Mn sublattice. Strong temperature hysteresis in the occurrence of the incommensurate magnetic phases in NdMn2O5 was observed depending on the cooling or heating history of the sample. Below about 20 K the magnetic structure became of a chiral type. From spherical neutron polarimetry measurements, the resulting low-temperature magnetic structure kz3 was approximated by the general elliptic helix. The parameters of the magnetic helixlike ellipticity and helical plane orientation in regard to the crystal structure were determined. A reorientation of the helix occurs at an intermediate temperature between 4 and 18 K. A difference between the population of right- and left-handed chiral domains of about 0.2 was observed in the as-grown crystal when cooling without an external electric field. The magnetic chiral ratio can be changed by the application of an external electric field of a few kV/cm, revealing strong magnetoelectric coupling. A linear dependence of the magnetic chirality on the applied electric field in NdMn2O5 was found. The results are discussed within the frame of the antisymmetric superexchange model for Dzyaloshinskii-Moriya interaction.
000888916 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000888916 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000888916 542__ $$2Crossref$$i2020-02-25$$uhttps://link.aps.org/licenses/aps-default-license
000888916 588__ $$aDataset connected to CrossRef
000888916 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x0
000888916 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x1
000888916 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x2
000888916 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x3
000888916 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
000888916 693__ $$0EXP:(DE-MLZ)POLI-HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)POLI-HEIDI-20140101$$6EXP:(DE-MLZ)SR9a-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePOLI: Polarized hot neutron diffractometer$$fSR9a$$x0
000888916 693__ $$0EXP:(DE-MLZ)RESI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)RESI-20140101$$6EXP:(DE-MLZ)SR8b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eRESI: Thermal neutron single crystal diffractometer$$fSR8b$$x1
000888916 7001_ $$0P:(DE-HGF)0$$aMatveeva, A. N.$$b1
000888916 7001_ $$0P:(DE-Juel1)164291$$aSazonov, Andrew$$b2
000888916 7001_ $$0P:(DE-HGF)0$$aBarilo, S. N.$$b3
000888916 7001_ $$0P:(DE-HGF)0$$aShiryaev, S. V.$$b4
000888916 7001_ $$0P:(DE-Juel1)166245$$aPedersen, Björn$$b5
000888916 7001_ $$0P:(DE-Juel1)164298$$aHutanu, Vladimir$$b6$$eCorresponding author$$ufzj
000888916 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.101.064425$$bAmerican Physical Society (APS)$$d2020-02-25$$n6$$p064425$$tPhysical Review B$$v101$$x2469-9950$$y2020
000888916 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.101.064425$$gVol. 101, no. 6, p. 064425$$n6$$p064425$$tPhysical review / B$$v101$$x2469-9950$$y2020
000888916 8564_ $$uhttps://juser.fz-juelich.de/record/888916/files/NdMn2O5-SNP-v10.1_VH.pdf$$yOpenAccess
000888916 8564_ $$uhttps://juser.fz-juelich.de/record/888916/files/PhysRevB.101.064425.pdf$$yOpenAccess
000888916 909CO $$ooai:juser.fz-juelich.de:888916$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000888916 9101_ $$0I:(DE-588b)36241-4$$6P:(DE-Juel1)166245$$aTechnische Universität München$$b5$$kTUM
000888916 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164298$$aForschungszentrum Jülich$$b6$$kFZJ
000888916 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)164298$$aRWTH Aachen$$b6$$kRWTH
000888916 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000888916 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000888916 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000888916 9141_ $$y2020
000888916 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13
000888916 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13
000888916 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-10-13
000888916 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-10-13
000888916 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000888916 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-13
000888916 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13
000888916 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-10-13
000888916 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888916 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-10-13
000888916 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2018$$d2020-10-13
000888916 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13
000888916 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13
000888916 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13
000888916 920__ $$lno
000888916 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000888916 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000888916 980__ $$ajournal
000888916 980__ $$aVDB
000888916 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000888916 980__ $$aI:(DE-588b)4597118-3
000888916 980__ $$aUNRESTRICTED
000888916 9801_ $$aFullTexts
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature02572
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/20/43/434206
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.71.214402
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.077204
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.067205
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.93.104406
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/9/40/017
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0921-4526(00)00851-6
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/00150190390206347
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.177402
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.114.117601
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/20/43/434213
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmmm.2013.10.034
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physb.2014.11.074
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.057205
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.094434
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.79.054705
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.140403
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-648X/aabdf6
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physb.2004.04.051
000888916 999C5 $$1S. V. Shiryaev$$2Crossref$$oS. V. Shiryaev Proceedings of the Fourth International Conference on Single Crystal Growth and Heat & Mass Transfer, Obninsk, Russia, September 24–28, 2001 2001$$tProceedings of the Fourth International Conference on Single Crystal Growth and Heat & Mass Transfer, Obninsk, Russia, September 24–28, 2001$$y2001
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.17815/jlsrf-1-23
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0021889809043234
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physb.2009.06.049
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.17815/jlsrf-1-22
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4963697
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-6596/294/1/012012
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0921-4526(93)90108-I
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.98.205119
000888916 999C5 $$1P. J. Brown$$2Crossref$$oP. J. Brown Neutron Scattering from Magnetic Materials 2006$$tNeutron Scattering from Magnetic Materials$$y2006
000888916 999C5 $$1Yu. A. Izyumov$$2Crossref$$oYu. A. Izyumov Magnetic Neutron Diffraction 1966$$tMagnetic Neutron Diffraction$$y1966
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.087206
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.097202
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.057206
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.126.896
000888916 999C5 $$1A. S. Moskvin$$2Crossref$$oA. S. Moskvin 1977$$y1977
000888916 999C5 $$1A. S. Moskvin$$2Crossref$$oA. S. Moskvin 1977$$y1977
000888916 999C5 $$1P. W. Anderson$$2Crossref$$oP. W. Anderson Magnetism 1963$$tMagnetism$$y1963
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/21/1/015903
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.76.074710
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.087203
000888916 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.060407