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Hydrodynamic interactions in squirmer dumbbells:
active stress-induced alignment and locomotion

Judit Clopés, Gerhard Gompper, and Roland G. Winkler

Hydrodynamic interactions are fundamental for the dynamics of swimming self-propelled parti-
cles. Specifically, bonds between microswimmers enforce permanent spatial proximity and, thus,
enhance emergent correlations by microswimmer-specific flow fields. We employ the squirmer
model to study the swimming behavior of microswimmer dumbbells by mesoscale hydrodynamic
simulations, where the squirmers’ rotational motion is geometrically unrestricted. An important
aspect of the applied particle-based simulation approach—the multiparticle collision dynamics
method—is the intrinsic account for thermal fluctuations. We find a strong effect of active stress
on the motility of dumbbells. In particular, pairs of strong pullers exhibit orders of magnitude
smaller swimming efficiency than pairs of pushers. This is a consequence of the inherent thermal
fluctuations in combination with the strong coupling of the squirmers’ rotational motion, which
implies non-exponentially decaying auto- and cross-correlation functions of the propulsion di-
rections, and active stress-dependent characteristic decay times. As a consequence, specific
stationary-state relative alignments of the squirmer propulsion directions emerge, where pullers
are preferentially aligned in an antiparallel manner along the bond vector, whereas pushers are
preferentially aligned normal to the bond vector with a relative angle of approximately 60◦ at weak
active stress, and one of the propulsion directions is aligned with the bond at strong active stress.
The distinct differences between dumbbells comprised of pusher or pullers suggest means to
control microswimmer assemblies for future microbot applications.

1 Introduction
Active matter consists of autonomous agents which convert in-
ternal chemical energy or environmental energy into directed
motion1–5. Characteristic features of active matter are broken
time-reversal symmetry, broken detailed balance, and absence of
a fluctuation-dissipation relation. This gives rise to phenomena,
which are absent in passive counterparts, such as enhanced wall
accumulation6–10, and cooperative11 and large-scale collective
motion12–19. Active matter-specific effects provide the basis for,
and can be exploited in, the design of new functional soft materi-
als20–23.

Theoretically, various models and approaches are applied
to resolve the particular features of active matter systems.
The paradigmatic model for dry active matter agents—absence
of hydrodynamic interactions—are Active Brownian Particles
(ABPs)1–4,24–28. Ensembles of this generic model capture basic
features of active systems, such as motility-induced phase separa-
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tion (MIPS)3,4,24–26,29–35, where the high density phase in two di-
mensions (2D) exhibits hexatic order32, whereas in 3D, ABPs are
fluid-like and are highly mobile even in the high-density regime,
and exhibit collective motion33.

Linear assemblies of freely rotating ABPs, where the orienta-
tional degrees of freedom are unconstrained, in form of dumb-
bells36,37 and longer chains22,23,38–44 have been studied. Here,
the coupling of activity and internal degrees of freedom strongly
affects their conformations and dynamics. Alternatively, ac-
tive dumbbells propelled along the bond connecting the two
monomers are considered45,46. Here, dumbbell rotation is in-
dependent of activity and a consequence of thermal fluctuations
only47. Moreover, fixation of the orientation between the propul-
sion directions of the two monomers with respect to each other
and/or the bond vector, provides a wide spectrum of possible
realizations. As an example, the phase behavior of dumbbells
with fixed parallel propulsion directions undergoing Brownian
motion has been studied37. Experiments show that dumbbells
of Janus-particle monomers with a fixed non-parallel relative ori-
entation exhibit a coupled translational and rotational motion.
Hence, such structures provide means for the design of swimmers
moving along specific trajectories48,49 such as spirals49. Simula-
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tions reveal a strong influence of the propulsion mechanism on
the activity-induced phase separation of dumbbells. For exam-
ple, dumbbells propelled along the bond in 2D phase separate at
smaller activities than ABPs50. In contrast, dumbbells of freely
rotating ABPs phase separate at larger activities37. Hence, de-
pending on the orientation of the propulsion directions and their
correlations, the phase behavior can be controlled.

A generic model for wet active particles—hydrodynamic inter-
actions are present28—are squirmers11,51–57, originally intended
to model ciliates and microalgae. Nowadays, squirmers are ap-
plied in studies of a broad range of both biological58 and syn-
thetic microswimmers59, because squirmers can be tuned to cap-
ture essential features of microswimmers flow fields—from push-
ers (E. coli) to ciliates (Volvox) and pullers (Chlamydomonas rein-
hardtii)60. Studies on spherical squirmers in presence and ab-
sence of thermal fluctuations reveal attractive and repulsive in-
teractions at distances larger than their diameter11,53,55,56,61.
Remarkably, the hydrodynamic interactions between spherical
squirmers60, and microswimmer in general62, suppresses MIPS
and can lead to particular ordered structures in absence of ther-
mal fluctuations63,64.

So far, very little is known about the effect of the microswim-
mer flow field on the properties of dumbbells composed of two
squirmers, which are permanently linked by a bond. Theoretical
studies on the athermal case show specific swimming behaviors
different from those of dry active dumbbells65. In particular, no
stable forward swimming can be achieved within a far-field con-
sideration of freely rotating, torque-free swimmers. A restriction
of the rotational motion of the individual squirmers by (rigid)
bonds leads to torques and stable swimming motion for various
dumbbell arrangements and pusher-puller combinations65. Ther-
mal fluctuations can be expected to destabilize the predicted sta-
tionary states and to imply a yet unexplored swimming behavior,
which is naturally absent in dry ABP-type systems.

The combination of squirmers into dumbbells is particularly in-
teresting, since it is a minimal model of linked microswimmers,
and forms the basis for autonomous units, e.g., linear polymers
or more complex assemblies, as a possible prerequisite of au-
tonomous microbots. Even more, the phase behavior of dumb-
bell ensembles is determined by interactions via the flow field of
the microswimmers to an extent unexplored so far, but can be ex-
pected to be different from that of dry ABP dumbbell ensembles.

In this article, we study the properties of freely rotating squirm-
ers linked by a bond of finite length embedded in a fluid. We
apply the multiparticle collision dynamics approach (MPC) to
model the fluid, a particle-based mesoscale simulation approach,
which accounts for hydrodynamic interactions and thermal fluc-
tuations58,66,67. MPC has successfully been utilized in studies of a
broad range of nonequilibrium soft matter and active systems, in
particular applying squirmers11,55,60,68–74. The presence of ther-
mal fluctuations fundamentally alters the swimming properties
of dumbbells compared to athermal ones. Most importantly, the
fluctuations imply a rotational diffusive motion of the individual
squirmers, and the dumbbells are able to swim in contrast to the
athermal case65. Our detailed analysis of the squirmers’ rota-
tional motion reveals a pronounced dependence on their partic-
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Fig. 1 Schematics of a squirmer dumbbell with squirmers of diameter
σ , bond vector RRR, and propulsion directions eee1 and eee2. The colors of the
semispheres indicate the propulsion asymmetry.

ular flow field, with the decay rate of autocorrelation function of
the propulsion direction strongly depending on the active stress.
This affects the dumbbells’ swimming motion, with major differ-
ences in the dumbbell center-of-mass mean-square displacement,
specifically between pusher and puller dumbbells. In particular,
the squirmers’ propulsion directions are no longer independent,
but rather are correlated with preferred activity-dependent angles
between them in the stationary state.

This article is structured as follows. In Sec.2, the simulation
approach is introduced with the squirmer dumbbell model and
its coupling to the MPC fluid. Section 3 presents results on the
orientational dynamics of the squirmers and the swimming be-
havior of dumbbells. In Sec. 4, the stationary-state orientational
properties of the squirmer propulsion directions with respect to
each other and the dumbbell bond vector are analyzed. Finally,
Sec. 6 provides a summary of the results.

2 Simulation approach

2.1 Dumbbell model

The active dumbbell is composed of two freely rotating spher-
ical squirmers as shown schematically in Fig. 1. An individual
squirmer is modeled as a rigid sphere of diameter σ with the pre-
scribed tangential slip velocity on its surface,

uuusq = B1 sinθ(1+β cosθ)eeeθ , (1)

which generates propulsion with a velocity v0 = 2B1/3 and
an active stress characterized by β 11,28,51–53,55,56,61,72,75. The
sign of the active stress determines the squirmers’ swimming
mechanisms—for pullers (C. reinhardtii) β > 0 and the thrust
mechanism is at the front, for pushers (E. coli) β < 0 and thrust
is produced in the rear of the swimmer. The value β = 0, for neu-
tral squirmers, corresponds to ciliates such as Volvox or Parame-
cia28,71. The corresponding flow fields of individual squirmers
are discussed in Ref.27,71, and Fig. 2 provides examples of dumb-
bell flow fields for various active stresses β 23.

The two squirmers at positions rrr1 and rrr2 are connected by the
harmonic potential

Ul =
k
2
(|RRR|− l)2 , (2)

with the bond vector RRR = rrr2− rrr1, the equilibrium bond length l,
and the spring constant k. The squirmer orientations eeei, |eeei| = 1,
i ∈ {1, 2}, change in response to thermal fluctuations and hydro-
dynamic interactions by their flow fields.
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To quantify activity, we introduce the Péclet number3,34,36,76

Pe =
v0

σD0
R
, (3)

where D0
R is the rotational diffusion coefficient of an individual

squirmer in a three dimensional dilute solution, and v0 its swim
velocity.

2.2 Fluid model: Multiparticle collision dynamics (MPC)

In MPC, the fluid is described as an ensemble of N point particles
of mass m. Their dynamics proceeds in two alternating steps:
streaming and collisions, updating the particle positions rrri and
velocities vvvi (i ∈ {1, . . . ,N}). In the streaming step, MPC particles
move ballistically during a collision time h and their positions are
updated as

rrri(t +h) = rrri(t)+hvvvi(t). (4)

Momentum exchange between particles takes place in the colli-
sion step. Here, the particles are sorted into cubic cells of mesh
size a defining the local interaction environment. The velocities
of the fluid particles after a collision, vvvi(t +h), are given by77,78

vvvi(t +h) = vvvcm(t)+R(α)vvvi,cm(t) (5)

− rrri,cm×

[
mI−1

∑
j∈cell

rrr j,cm× (rrr j,cm−R(α)vvv j,cm)

]
,

within the stochastic-rotation-dynamics (SRD) variant with an-
gular momentum conservation of MPC (MPC-SRD+a)11,77. In
Eq. (5), R(α) is the rotation matrix for the rotation of the relative
velocity vvvi,cm = vvvi−vvvcm with respect to the center-of-mass velocity
vvvcm of the cell of particle i by a fixed angle α around a randomly
oriented axis79. I is the inertia tensor in the cell’s center-of-mass
reference frame and rrri,cm = rrri− rrrcm is the difference vector with
respect to the center-of-mass position rrrcm of the cell of particle i.
A constant temperature is maintained by applying the cell-level
canonical Maxwell-Boltzmann scaling (MBS) thermostat after ev-
ery collision step79. The MPC algorithm is highly parallel, hence,
a graphics processor unit (GPU)-based version for a high perfor-
mance gain is employed80 (see ESM).

2.3 Implementing squirmers in MPC

A squirmer is a neutrally buoyant rigid spherical colloidal particle
of mass M, diameter σ , center-of-mass position CCC, orientation eee,
translational velocity vvv, and angular momentum LLL. During the
MPC streaming step, it moves according to the rigid-body dynam-
ics, where the rotational motion is described by quaternions11,81.
Interactions with MPC particles lead to changes of the linear and
angular momentum of a squirmer (cf. ESM). In the MPC collision
step, phantom particles are uniformly distributed inside each col-
loid, which take part in the MPC collisions and improve the no-
slip boundary condition11,82,83. Their number density and mass
are equal to those of fluid particles. MPC collisions lead to a
change of the phantom particles moments, which are transferred
to the colloid and change its linear and angular momentum11.
Details of the algorithm and the interactions of a squirmer with

MPC particles are described in the ESM.

2.4 Parameters

Dumbbells are composed of squirmers of diameter σ = 6a, mass
M = 10m, bond length l = 8a, and k = 5000 kBT/(ma2), where
kB is the Boltzmann constant and T the temperature. The rigid-
body equations of motion are solved with the time step ∆t =
0.002

√
ma2/(kBT ). For the MPC fluid, we use the mean number of

particles per collision cell 〈Nc〉= 10, the rotation angle α = 130◦,
and the collision step size h = 0.05

√
ma2/(kBT ), which yields the

fluid viscosity η ≈ 7.2
√

mkBT/a4. The latter value is approxi-
mately 10% smaller than the theoretical value ηt = 8.1

√
mkBT/a4,

consistent with previous studies78. Simulations yield the rota-
tional diffusion coefficient D0

R = 2.2×10−4
√

kBT/(ma2) of a pas-
sive colloid in dilute solution. The length of the simulation box is
L = 40a. Displayed results are averages over at least 10 indepen-
dent realizations for every parameter set.

We consider the values B1/
√

kBT/m = 0.02− 0.12, which cor-
respond to the Péclet numbers Pe = 10− 60 (Eq. (3)) and the
Reynolds numbers Re= v0σ/ν = 0.12−0.72< 1 for the considered
squirmer size and MPC fluid parameters, where ν =η/(m〈Nc〉/a3)

is the kinematic viscosity. Since the swimming velocity of the
dumbbell depends on the active stress and can be substantially
smaller than v0, cf. Sec. 5.2, these Reynolds numbers are an up-
per limit for the respective B1 (v0) value; for example, Re < 0.05
for β & 1.

Moreover, the oscillatory Reynolds number ReT is finite, where
ReT is the ratio of the viscous time scale τν for shear-wave propa-
gation over a characteristic length scale and a characteristic time
scale (frequency) of the dumbbell84,85. Here, we set τν = l2/ν

and the relevant time scale is given by the rotational motion of
a squirmer, hence, ReT = 2DRl2/ν . The above parameters yield
ReT = 0.04 for DR = D0

R. Hence, rotation is sufficiently slow to en-
sure hydrodynamic coupling of the rotational motion of the two
squirmers of a dumbbell.

3 Swimming behavior of freely jointed
squirmer dumbbells

3.1 Dynamics of individual squirmers

The autocorrelation function 〈eee(t) ·eee(0)〉 of the rotational diffusive
motion of passive colloids in a dilute suspension decays exponen-
tially as

〈eee(t) · eee(0)〉= e−2D0
Rt (6)

due to thermal fluctuations86,87. Similarly, the correlation func-
tion of individual squirmers embedded in a MPC fluid decays
exponentially with the rotational diffusion coefficient D0

R, since
the rotational motion is independent of the active process and is
only affected by thermal fluctuations in the fluid11. Moreover, the
mean-square displacement of individual squirmers is independent
of the active stress (β). Hence, the squirmer dynamics in dilute
solution is characterized by the propulsion velocity v0 and the ro-
tational diffusion coefficient D0

R and is quantitatively described by
an ABP with the same v0 and D0

R.

Journal Name, [year], [vol.],1–12 | 3
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Fig. 2 Flow fields in the laboratory reference frame of most probable squirmer-squirmer relative orientations for different active stresses, β . For (a)
neutral (β = 0) and (b) pullers (β = 5), the squirmers’ propulsion directions point outward with respect to the center of the dumbbell. For (c) weak
pushers (β = −1), there is a finite angle between the propulsion directions, both pointing “normal” to the dumbbell bond vector. In addition to the
configuration in (c), (d) strong pushers (β =−5) exhibit states, where one of the propulsion directions is preferentially aligned with the bond vector. The
flow fields have been obtained by a superposition of the two individual squirmer flow fields and their Stokeslets emerging from the bond force. The
latter give rise to a force dipole. (Cf. ESM for movies).

0:0 0:2 0:4 0:6 0:8 1:0
D0
Rt

10−1

100

〈e
(t

)
·e

(0
)〉

β = 5
β = 3
β = 1
β = 0
β = -1
β = -3
β = -5

Fig. 3 Autocorrelation function of the squirmer propulsion direction as
a function of the scaled time D0

Rt, where D0
R is the rotational diffusion

coefficient of a passive colloid (and independent squirmers), for Pe = 30
and various active stresses as indicated in the figure. The red dotted
line indicates the exponential decay of the correlation function a passive
colloid with D0

R = 2.2×10−4
√

kBT/(ma2).

3.2 Squirmer rotational dynamics in a dumbbell
As for individual squirmers, the thermal fluctuations in a fluid
imply a rotational motion of the squirmers in a dumbbell. This
is in contrast to studies on athermal squirmers, where orienta-
tional changes occur by the interference of the flow fields of mi-
croswimmers only. As a consequence, for athermal dumbbells the
squirmer orientations are fixed in the stationary state. This im-
plies particular ordered structures in dense systems of individual
athermal squirmers63,64. However, thermal fluctuations are an
integral part in systems of biological and synthetic microswim-
mers and affect their rotational motion4,88,89.

The decay of the autocorrelation of the propulsion direction,
as shown in Fig. 3, is a function of the active stress β and may
no longer decay by a single-exponential function due to the com-
bined effect of thermal fluctuations and hydrodynamic interac-
tions. To characterize the decay of the correlation function, we

−4 −2 0 2 4
β

0:0

0:5

1:0

1:5

2:0

γ
R
τ s

Pe = 10

Pe = 20

Pe = 30

Pe = 60

Fig. 4 Characteristic decay time τs of the autocorrelation function of
Fig. 3 as a function of the active stress β for the Péclet numbers
Pe = 10, 20, 30, and 60. The decay time is scaled by the rotational diffu-
sion coefficient of a passive colloid, where γR = 2D0

R.

determine a characteristic time τs by the condition that the cor-
relation function has decayed to 1/e at t = τs. The decay time τs

is presented in Fig. 4, reflecting a strong dependence on β and
Pe. In the range −5 < β < 1, the decay time, τs, increases mono-
tonically with β , and decreases nearly linearly for 1 < β < 5. The
range of τs values increases with increasing Pe. Interestingly, all
pullers (β > 0) exhibit similar τs values in the range 20 < Pe < 30.
Moreover, the decay-time curves for the various Pe all intersect
at β ≈ −1, indicating a Pe-independent relaxation. In the range
−1 < β . 3, the orientational relaxation is slower than that of
an individual, unbound squirmer, and larger Pe lead to longer
relaxation times. For β < −1, τs decreases with increasing Pe,
corresponding to a faster relaxation.

The spectrum of decay times and the difference with respect to
the time (2D0

R)
−1 of individual squirmers reveals the strong influ-

ence of the overlapping squirmer flow fields in a dumbbell on the
squirmer dynamics. Naturally, this is distinctly different from the
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behavior of ABP dumbbells, although pushers with β =−1 exhibit
a very similar relaxation behavior. The hydrodynamic interplay is
rather complex due to both, the reorientation dynamics of the in-
dividual squirmers and the rotation of linked squirmers around
each other. Note that the bond is not restricting their individual
solid-body rotation. This is also reflected in the correlation func-
tion of the propulsion directions with respect to the bond vector
(cf. Figs. S2).

3.3 Crosscorrelation function of propulsion directions

The crosscorrelation function 〈eee1(t) · eee2(0)〉 between the propul-
sion directions of the two squirmers, displayed in Fig. 5, illustrates
their tight dynamical coupling, with functions decaying typically
in a non-single exponential manner. Figure 6 depicts the char-
acteristic decay time τc as a function of β for various Pe, which
is defined in the same way as τs. In contrast to τs of individ-
ual squirmers in a dumbbell, τc decreases with increasing Pe for
all β . The decay time increases monotonically with increasing
β for pushers (β < 0) and decreases monotonically for pullers
(β > 0), with a maximum for neutral squirmers (β = 0). Note-
worthy, the τc values are always larger than the τs, i.e., the cross-
correlation function decays slower the autocorrelation function of
a squirmer, which emphasizes the hydrodynamic coupling of the
squirmer propulsion directions.

3.4 Bond-vector autocorrelation function

The bond-vector autocorrelation function of a flexible dumbbell
of ABPs is given by36

〈RRR(t) ·RRR(0)〉= l2e−t/τl +
2v2

0τ2
l

1− (γRτl)2

(
e−γRt − e−t/τl

)
, (7)

with an activity-dependent relaxation time τl and γR. In the limit
of vanishing activity (v0→ 0), the correlation function reduces to

〈RRR(t) ·RRR(0)〉= l2e−t/τ0
l , (8)

0:0 0:5 1:0 1:5
D0
Rt

10−1

100

|〈
e

1(
t)
·e

2(
0)
〉|

/|
〈e

1(
0)
·e

2(
0)
〉|

Fig. 5 Crosscorrelation function, 〈eee1(t) · eee2(0)〉, of the squirmer orienta-
tions as a function of the scaled time D0

Rt for Pe = 30 and various active
stresses β as indicated in the figure.

−4 −2 0 2 4
β

0:0

0:5

1:0

1:5

2:0

2:5

3:0

γ
R
τ c

Pe = 10

Pe = 20

Pe = 30

Pe = 60

Fig. 6 Characteristic decay time τc of the crosscorrelation function of
Fig. 5 as a function of the active stress β for the Péclet numbers Pe =

10, 20, 30, and 60. The decay time is scaled by the rotational diffusion
coefficient of a passive colloid, where γR = 2D0

R.

with the relaxation time τ0
l = γT l2/(6kBT ), where γT is the transla-

tional friction coefficient of an individual colloid. Here, the decay
of the correlation function is determined by the rotational dif-
fusion of the dumbbell with the rotational diffusion coefficient
Dl

R = 3kBT/(γT l2)47 (cf. comment in Ref. 90). At high Péclet
numbers, Eq. (7) becomes

〈RRR(t) ·RRR(0)〉= l2e−2DRt , (9)

and the decay of the correlation function is governed by the rota-
tional diffusion of the individual ABPs. In general, both relaxation
processes contribute to the decay of the correlation function.

The squirmer dumbbell bond-vector autocorrelation function is
depicted in Fig. 7 for Pe = 30. As for ABP dumbbells, the corre-
lation function decays non-exponentially at short times. Neutral-
squirmer and weak-puller (β < 2) dumbbells show a slower decay
compared to an ABP dumbbell, which translates into a higher ef-
fective rotation diffusion coefficient Dl

R. For other active stresses,
a faster decay than that of ABP dumbbells is obtained. Further-
more, the coupling of strong pushers results in a non-exponential
decay of the bond-vector autocorrelation function, with nega-
tive correlations at intermediate times (Fig. 7), which indicates a
particular dynamical behavior—a rotational motion of the whole
dumbbell—as discussed in more detail in Sec. 4.2. The depen-
dence of the decay times, τl , on β and Pe is qualitatively similar
to that of τs as shown in Fig. S1.

4 Stationary-State Squirmer Propulsion
Alignment

The strong interference of the squirmer flow fields combined with
the Stokeslets emerging from the bond force implies particular
average stationary state alignments of their propulsion directions
with respect to each other and the bond vector.

Journal Name, [year], [vol.],1–12 | 5

Page 5 of 13 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
5 

O
ct

ob
er

 2
02

0.
 D

ow
nl

oa
de

d 
by

 F
or

sc
hu

ng
sz

en
tr

um
 J

ue
lic

h 
G

m
bh

 o
n 

10
/1

5/
20

20
 1

2:
24

:2
3 

PM
. 

View Article Online
DOI: 10.1039/D0SM01569E

https://doi.org/10.1039/D0SM01569E


0.0 0.5 1.0 1.5 2.0
DRt

10°1

100
hR

(t
)
·R

(0
)i
/l

2

0.0 0.5 1.0

0.0

0.5

1.0

Fig. 7 Bond-vector autocorrelation function as a function of to the scaled
time D0

Rt for Pe = 30. The color code is the same as in Fig. 5. The light
red dashed line is the bond-vector autocorrelation function for an ABP
dumbbell (Eq. (7)). The gray and light blue lines are the limits Pe→ 0
and Pe→ ∞ described in Eq. (8) and (9), respectively. The inset shows
the same data on linear scales.

4.1 Squirmer-squirmer propulsion alignment
The average cosine of the angle ϑ between the two propulsion
directions,

p = 〈eee1 · eee2〉= 〈cosϑ〉 , (10)

is displayed in Fig. 8. It changes nearly monotonically from a pos-
itive value for β < 0 to a negative value for β > 0, with a change
of the angle from ϑ ≈ 65◦ to ϑ ≈ 160◦. An increasing activity
amplifies the preference in alignment, and an asymptotic curve
seems to be approached for large Pe. Interestingly, the asymp-
totic value for β < −2, p ≈ 0.65, is far from a parallel as well as
an orthogonal alignment. In contrast, pullers for β > 2 are almost
aligned in an antiparallel manner with p ≈ −0.95. Noteworthy,
p for neutral squirmers is negative, corresponding to a preferred
antiparallel alignment, and the curves for the various Pe intersect
at β ≈ −0.5, with an angle of ϑ ≈ 90◦. The preference for an
outward antiparallel alignment is explained by the instability of
conformations where π/2 > ϕ1 >−π/2 and π/2 < ϕ2 < 3π/2, i.e.,
already for a slight inward antiparallel alignment of the propul-
sion directions, where the whole dumbbell starts to rotate until
the squirmer propulsion directions point antiparallely apart from
each other.

Qualitatively, the observed alignment for pushers (β < 0) and
pullers (β > 0) can be understood by the interactions between two
force-dipoles6,53,71,91, which yields parallel side-by-side arrange-
ment of pushers and collinear alignment of pullers. The finite
opening angle of ϑ ≈ 65◦ for pushers is a consequence of higher-
order multipoles of the squirmer flow field71. This is reflected
in diverging trajectories of side-by-side swimming pushers53,55.
Similarly, the opposite orientation of the puller propulsion direc-
tion is due to higher-order multipoles.

The strong opposite alignment of pullers is consistent with the
stable fixed point obtained for athermal squirmers within the far-
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Fig. 8 Average alignment p = 〈eee1 · eee2〉 of the squirmer propulsion di-
rections as a function of the active stress β for the Péclet numbers
Pe = 10, 20, 30, and 60 (bottom to top at β =−5).
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Fig. 9 Variance ∆p2 of the squirmers’ alignment distribution function as
a function of the active stress β and the Péclet number Pe.

field approximation65. To which extend near-field hydrodynamic
effects are important remains to be analyzed.

Qualitatively different from the theoretical prediction for ather-
mal dumbbells is the behavior of pusher dumbbells for β < −1.
Due to thermal fluctuations and possibly near-field hydrodynamic
effects, the preferred alignment angle, ϑ ≈ 65◦, is substantially
different from the analytical derived values65.

The stability of the squirmer alignment strongly depends on Pe
and β . Figure 9 depicts the variance

∆p2 = 〈(eee1 · eee2)
2〉− p2 (11)

of the squirmers’ alignment distribution function. The fluctua-
tions are extremely small for pullers at Pe & 20 and β & 3, indi-
cating a very strong preference in alignment. They are more than
twice as large for β .−2 at Pe & 25, but still small. However, ∆p2

is large for β ≈ 0 for all Péclet numbers.

4.2 Squirmer-propulsion bond alignment
To characterize the alignment of the squirmer propulsion direc-
tion relative to the dumbbell bond vector, RRR, we consider the
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Fig. 10 Probability distribution function of the alignment of the squirmer propulsion direction with respect to the dumbbell bond vector, eeei ·RRR/|RRR|= cosϕi,
for each squirmer (i = 1, orange, i = 2 purple) and (a) β = 0, (b) β = −1, and (c) β = −5. The Péclet number is Pe = 30. The solid lines are fits of (a)
exponential and (b) Gaussian functions, respectively. In (b), dashed lines indicate exponential fits, and in (c), dotted lines Gaussian fits; the solid lines
are the sum over the fit functions.

quantity

qi =
eeei ·RRR
|RRR|

= cosϕi. (12)

Figure 10 displays the probability distribution function (PDF) of
qi for various β ≤ 0. The PDFs for neutral squirmers decay expo-
nentially with maxima at cosϕ =±1, corresponding to a preferred
antiparallel alignment of the propulsion directions. The distribu-
tion functions for pushers with β = −1 are approximately Gaus-
sian (Fig. 10(b)), but with exponential tails, and exhibit maxima
at ϕ1≈ 127◦ (q1 =−0.6) and ϕ2≈ 53◦ (q2 = 0.6), respectively, with
respect to the bond vector (Fig. 2(c)). Such dumbbells preferen-
tially swim in the direction normal to the bond vector. At β =−5,
the qi exhibit a preference for antiparallel/parallel alignment with
respect to the bond vector. In addition, a broad plateau-like
regime is present for −1/2 < q1 < 0 and 0 < q2 < 1/2, respectively
(Fig. 10(b)). The distribution functions can be considered as a
superposition of two Gaussians, a narrow Gaussian for the an-
tiparallel/parallel alignment with the bond, and a wide Gaussian
for the broad spectrum of possible alignments with respect to the
bond. However, typically the two squirmer are not bond-aligned
at the same time. The large value of p≈ 0.6 suggest that for a par-
allel alignment of eee2 (q2 = 0) with the bond, ϕ1 ≈ 55◦, and for the
antiparallel alignment of eee1 with the bond (q1 = −1), ϕ2 ≈ 125◦,
respectively (Fig. 2(d)). Hence, a coupled dynamics emerges,
where squirmer pair switches from an antiparallel-oblique state
of squirmer 1 and 2 to an oblique-parallel state and vice versa.
This type of coupled alignments allows for a correlated rotational-
type motion, which is reflected in the bond-vector autocorrelation
function, Fig. 7, with its negative part.

The distribution functions for β > 0 are qualitatively similar
with that for β = 0, they decay exponentially with maxima at
cosϕ = ±1, corresponding to a preferred antiparallel alignment
of the propulsion directions, and with widths decreasing with in-
creasing β as shown in Fig. 8. The preferred orientation is il-
lustrated in Fig. 2(a), (b) and explains the very low transport of
neutral and puller squirmers.

We like to stress the importance of orientational fluctuations of
the individual squirmers for the stability of the swimming motion.
Although the PDFs of neutral squirmers show maxima at cosϕ =

±1, the averages q≈±0.76 (corresponding to ±40◦) are far from
q = ±1, which significantly influences the transport properties of
dumbbells.

4.3 Bond force

The preference in the alignment of the propulsion directions leads
to a bond force,

Fb = k (|RRR|− l) , (13)

which depends on Péclet number and active stress. Figure 11
shows the bond force normalized by the Péclet number as a func-
tion of the active stress (see also Fig. S4 and S5). The bond force
is positive for all Pe and β , hence, the squirmers repel each other.
The difference between the force values for the various Pe are
small, consistent with a nearly linear increase of Fb with Pe (Fig.
S4). Neutral squirmers (and weak pullers at small Pe) exhibit the
strongest repelling force due to the outward pointing antiparallel
alignment of the propulsion directions (Fig. 11). With increas-
ing active stress, β > 0, repulsion decreases and attraction is ob-
tained for athermal pullers by their flow field characteristics65.
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Fig. 11 Normalized bond force, Fb/Pe, as a function of the active stress,
β , for the indicated Péclet numbers.
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The latter is not the case for our thermal systems. Similarly, push-
ers show a reduced repulsion due to their preferred orientation
roughly perpendicular to the bond vector. The repelling force in-
creases again for strong pushers, because of the increasing prob-
ability of one of the propulsion directions to align with the bond.

As shown in Fig. S6, the bond force depends only weakly on the
dumbbell bond length, l, for most active stresses, in particular for
larger l, and for l→ ∞ an asymptotic values is assumed. Consis-
tent with the simulation results, analytical calculations for ABP
dumbbells36 yield a bond force, which increases linearly with Pé-
clet number (3) and is independent of the bond length. Even the
magnitudes of the asymptotic forces are of the same order.

The presence of the bond has a major impact on the dumbbell
overall flow field. The bond force on a squirmer gives rise to a
Stokeslet by the coupling of the squirmer motion with the fluid
as for a passive colloid, and by Newton’s third law (action = re-
action) the bond induces a “fluid” force dipole. The force-dipole
strength Fbl increases approximately linearly with the Péclet num-
ber (Fig. 11). Hence, depending on the squirmers active stress
and the Péclet number, this dipolar flow field can dominate the
squirming flow field. This is reflected by the flow fields displayed
in Fig. 2.

4.4 Squirmer-squirmer propulsion alignment: dumbbell
bond-length dependence

The flow field of a squirmer can be represented by a multipole
expansion with contributions from the force dipole, the source
dipole, the source quadrupole term, etc., which decay as 1/r2,
1/r3, 1/r4, and further terms of order O(1/r5), with the distance
r from the squirmer center11,91. Hence, an increase of the dumb-
bell bond length, l, leads to a decrease of the flow field-mediated
interactions, and in the asymptotic limit l→ ∞ the alignment pa-
rameter p (Eq. (10)) approaches zero. Interestingly, p of neutral
squirmers changes only slowly over the considered range of bond
lengths, as shown in Fig. 12 (cf. Fig. S3 for Pe = 10), whereas

1:25 1:50 1:75 2:00 2:25 2:50 2:75 3:00
l=σ

−1:0

−0:5

0:0

0:5

1:0

p

(b)

Fig. 12 Average alignment p = 〈eee1 · eee2〉 of the squirmer propulsion di-
rections as a function of the dumbbell bond length for the active stress
β = 0, ±1, ±3, and ±5. The Péclet number is Pe = 30. The color code is
the same as in Fig. 3.
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Fig. 13 Trajectories of the dumbbell center-of-mass for various active
stresses β and Pe = 30. Note that the trajectory for the center-of-mass
position of the dumbbell with β = 5 is ten times longer. The lines on the
left-hand side of the figure indicate projections of the trajectories in the xz
plane.

|p| of the curves for β 6= 0 decreases with increasing l. This can
be explained by the force dipole generated by the bond, which
evidently dominates the fluid-mediate interactions between the
squirmers, since the interactions between the squirmer flow fields
vanish with increasing l. Surprisingly, the curves for β = −1 and
β =−3, maybe even for β −5 at larger l, exhibit a non-monotonic
behavior, crossing the p = 0 line and assume negative values be-
fore they approach the asymptotic value. Here, even for rather
large bond lengths, the characteristics of the squirmer flow field
matters.

5 Dumbbell dynamics

5.1 Squirmer trajectories and flow fields

Figure 13 shows characteristic trajectories of dumbbells for var-
ious active stresses. Evidently, they differ substantially qualita-
tively and quantitatively, in particular, the displacement of the
pushers with β = 5 is very small compared to that of the neutral
squirmers and weak pushers (β = −1). The latter is related to
the antiparallel alignment of the propulsion directions along the
bond. Trajectory of pushers with β = −5 exhibit circular parts,
which emerge by the particular orientation of one of the squirm-
ers pointing along the bond vector, as illustrated in Fig. 2(d).

The flow fields for the most probable squirmer geometries at
the respective Péclet number are displayed Fig. 2. They are su-
perpositions of the flow fields of the individual squirmers as well
as the Stokeslet fields, generating a force dipole, emerging by to
the bond force (cf. Sec. 4.3). Hence, the flow field is not strictly
satisfying the boundary condition on the squirmers surface, nev-
ertheless, it provides an impression of the actual field. Due to
the bond-force fluid dipole, the velocity fields are predominantly
dipolar, even for neutral squirmers. Yet, the near field is strongly
dominated by the squirmer flow fields, which is particularly pro-
nounced for strong pushers (β =−5) in Fig. 2(c) and 2(d).
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Fig. 14 Center-of-mass mean-square displacement of squirmer dumb-
bells as a function of the scaled time D0

Rt for the indicated active stresses
and the Péclet number Pe = 30. The red dotted line indicates the ABP
dumbbell theoretical prediction Eq. (14) using the rotational diffusion co-
efficient, D0

R, of an individual squirmer.

5.2 Center-of-mass mean-square displacement
The center-of-mass mean-square displacement (MSD) of dumb-
bells for various active stresses β is displayed in Fig. 14. The MSD
shows two regimes that are characteristic of active particles. At
short times D0

Rt � 1, the dumbbells propagate ballistically with
the MSD proportional to t2, and for long times, D0

Rt � 1, their
motion is diffusive. Qualitatively, the dumbbell dynamics is de-
scribed by the MSD of an active dumbbell of two ABPs36,〈

(rrrcm(t)− rrrcm(0))2
〉
=

3kBT
γT

t +
2v2

0
γ2

R

(
γRt + e−γRt −1

)
, (14)

with the translational diffusion coefficient Da
T = v2

0/(6DR) = γR/2
of an individual ABP36.

The strong dependence of the squirmer-dumbbell MSD on the
active stress is illustrated in Fig. 14. In the ballistic regime, push-
ers with −5 ≤ β ≤ −1 exhibit an approximately active stress-
independent displacement and swim velocity, as displayed in
Fig. 15(a), where v is obtained by a fit of Eq. 14 (cf. Fig. S7
for examples of fits). The displacement decreases substantially
for pullers with increasing β , and the dumbbell swim velocity
becomes much smaller than the velocity v0. Here too, for large
β > 0, an active stress-independent velocity is assumed, which
decreases with increasing Péclet number. Linked with the orien-
tation of the propulsion directions, v changes substantially in the
vicinity of β = 0 in a phase transition-like manner.

The crossover from the ballistic to diffusive motion shifts to
shorter times with increasing magnitude of the active stress |β |>
1. As a consequence, for large β ≈ 5, hardly any ballistic regime
remains. At the same time, the diffusion coefficient decreases
with increasing |β | > 1 and the respective dumbbell MSD can be
even orders of magnitude smaller than that of ABP dumbbells.
Quantitatively, the MSD of ABP dumbbells slightly overestimates
that of pusher dumbbells with β = −1, which corresponds to a
somewhat smaller swim velocity of squirmer dumbbells, but cap-
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β

100

101
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D
T
=D
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Fig. 15 (a) Effective swim velocity, v, and (b) center-of-mass active dif-
fusion coefficient, DT , of squirmer dumbbells as a function of the active
stress, β , for the Péclet numbers Pe = 10, 20, 30, and 60 (bottom to top at
β =−5). The horizontal dotted lines indicate the diffusion coefficients of
ABP dumbbells.

tures the time dependence well.
Figure 15(b) depicts the diffusion coefficients for various β and

Péclet numbers. There is a substantial quantitative difference be-
tween the DT values of pushers and pullers, where pusher dumb-
bells diffuse always faster than dumbbells of neutral squirmers
and pullers. For pushers (β ≤ −1), DT increases monotonically
with increasing Pe, but it is always smaller than the DT of ABP
dumbbells. For neutral squirmers and weak pullers (β < 2), DT

can change non-monotonically as a function of Pe. The change
of DT in the vicinity of β = 0 is substantial, rather abrupt, and
increases with increasing activity. This suggests a jump, phase
transition-like, change of the squirmer dynamics in the range
−2 < β < 2 for asymptotically large Pe, since DT increases, e.g.,
for β = −1, and decreases simultaneously for, e.g., β = 1 with
increasing Pe.

The substantial qualitative different diffusive behavior of the
various dumbbells is related the preferred alignment of the
squirmers’ propulsion direction. The outward-oriented antipar-
allel alignment along the bond of pullers (β > 0) naturally leads
to a cancellation of the propulsion and no stable swimming is

Journal Name, [year], [vol.],1–12 | 9
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obtained for athermal dumbbell pullers65, which corresponds to
the limit Pe→ ∞ in our case. However, thermal fluctuations per-
turb the perfect alignment, and a finite active transport is ob-
tained with a diffusion coefficient larger than the thermal value
for Pe < ∞. Even more, the alignment of pushers gives rise to
strong active transport. As a consequence, stable and fast swim-
ming of such dumbbells is obtained.

6 Summary and conclusions
To elucidate the effect of thermal fluctuations and internal hydro-
dynamic interactions on the transport properties of microswim-
mers, we have performed mesoscale hydrodynamics simulations
of active dumbbells composed of linked squirmers with geometri-
cally unrestricted rotational motion. We find a strong influence of
the squirmers’ flow fields on their rotational dynamics, stationary-
state orientation of the propulsion directions with respect to each
other and the bond vector, and their swimming behavior.

Squirmers in dumbbells exhibit a faster decay of the autocorre-
lation function of the propulsion direction for β < −1 and β & 3
than independent squirmers by the coupling of the squirmer flow
fields and the fluid force dipole emerging from the bond. Specif-
ically for pushers, the effect is amplified with increasing Péclet
number. For the range −1 < β < 3, the relaxation time increases
with increasing Pe. The relaxation times of the crosscorrelation
function, τc, of the propulsion directions are typically longer than
those of the autocorrelation function, τs, of individual squirm-
ers and the Brownian relaxation time, 1/γR, of ABPs. Mainly for
strong pushers and large Pe, τc values are assumed, which are
smaller than those of ABP dumbbells.

The hydrodynamic coupling of the squirmer flow fields leads
to a preferred stationary-state alignment of their propulsion di-
rections. The propulsion directions of pushers with −5 < β <−1
are nearly parallel and orient approximately normal to the bond
vector, with larger fluctuations of the latter. Pullers (β > 0) align
in an antiparallel manner with respect to each other and along
the dumbbell bond vector. The source-dipole flow field of neu-
tral squirmers (β = 0) is sufficient to produce a weak antiparallel
coupling. The average cosine, p = 〈cosϑ〉, of the angle between
the propulsion directions exhibits a rapid change in the vicinity
of β = 0, which becomes sharper with increasing Pe, and is remi-
niscent of a transition from a preferred parallel alignment of the
eeei for β < 0 to an antiparallel alignment for β > 0. Notewor-
thy, we find two bistable orientational states for strong pusher
dumbbells (β =−5), where the squirmer pairs fluctuate between
states of oblique-parallel or oblique-antiparallel alignment of the
two propulsion directions, which slows down the overall directed
motion compared to weak pushers. Such states lead to a (short
time) rotational motion of the dumbbell as reflected in circular
trajectories.

The preferred alignment of the propulsion directions substan-
tially affects the dumbbell motility. In particular the activity-
dominated diffusion coefficient, DT , of pullers decreases with in-
creasing β and for large Pe is only a factor 2− 3 larger than the
thermal diffusion coefficient. In contrast, the diffusion coefficient
of pushers dumbbells is orders of magnitudes larger, in particu-
lar for β ≈ −1. However, DT is in always smaller than that of

ABP dumbbells. As the alignment, DT changes very rapidly in the
vicinity of β = 0 from a very large value (β < 0) to a value close
to D0

T (β > 0) of passive dumbbells. Since DT of ABP dumbbells
grows as Pe2 with increasing Péclet number, we can expect an
even stronger jump-like behavior of DT in the limit Pe� 1.

Our simulations reflect aspects predicted theoretically for
athermal squirmer dumbbells within the far-field approxima-
tion65, in particular, the low swimming ability of pullers due
to the preferred stable antiparallel orientation of the squirmer
propulsion directions. However, in strong contrast to the theo-
retical predictions for athermal systems, pushers exhibit a large
active transport. For β ≈ −1, the diffusion coefficient DT is even
close to that of ABP dumbbells. This difference reflects the impor-
tance of thermal fluctuations and near-field hydrodynamic effects
on the transport properties of squirmer assemblies. Hence, fluid
flow could be a factor, which mediates assembling and collective
swimming of microorganisms in polymeric structures observed in
some planktonic species92,93.

Our simulation studies reveal a strong influence of microswim-
mer flow fields on the motility of dumbbells. Similarity, for linear
polymer-like assemblies, it has been show that the hydrodynamic
coupling between monomer flow fields gives rise to intricate mo-
tion patters, such as rotation or beating, even in absence of swim-
ming94. The effect of these flow fields on the swimming proper-
ties of longer polymer-like structures remains to be elucidated.

ABP dumbbell systems exhibit motility-induced phase separa-
tion37,50. Considering the major impact of the squirmer flow
fields on the dumbbell dynamics and the alignment of their
propulsion directions, we expect also pronounced effects on the
dumbbell phase behavior. As has been shown for spheres and
spheroids, the squirmer flow field can substantially modify the
phase behavior, from a suppression of MIPS for spheres to an
enhanced phase separation for spheroids in 2D60. A hydrody-
namically restricted rotational freedom of the individual squirm-
ers may give rise to a distinctly different phase behavior or/and
collective dynamics. Studies of such systems are under way.

Our studies clearly reveal that tuning the squirmers’ flow fields
provides means to control the swimming behavior of dumbbells.
This flexibility is a fundamental prerequisite for the rational de-
sign of synthetic microswimmer assemblies based on pusher-
/puller-type active units for future autonomous microbot appli-
cations.
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