Hauptseite > Publikationsdatenbank > Efficient Photocatalytic Oxidation of Aromatic Alcohols over Thiophene‐based Covalent Triazine Frameworks with A Narrow Band Gap > print |
001 | 888936 | ||
005 | 20240712112814.0 | ||
024 | 7 | _ | |a 10.1002/slct.202004115 |2 doi |
024 | 7 | _ | |a 2128/26973 |2 Handle |
024 | 7 | _ | |a altmetric:95378596 |2 altmetric |
024 | 7 | _ | |a WOS:000596036800028 |2 WOS |
037 | _ | _ | |a FZJ-2020-05335 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Liao, Longfei |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Efficient Photocatalytic Oxidation of Aromatic Alcohols over Thiophene‐based Covalent Triazine Frameworks with A Narrow Band Gap |
260 | _ | _ | |a Weinheim |c 2020 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1611416473_30479 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Photocatalytic selective oxidation of aromatic alcohols by covalent organic frameworks (COFs) is a sustainable strategy to replace present metal‐based heterogeneous catalytic oxidation systems. Covalent triazine‐based frameworks (CTFs), a subgroup of COFs, possess promising properties as efficient catalysts for photocatalytic oxidation. Sulfur‐containing metal‐free CTFs exhibit a good performance in photocatalysis due to their narrowed band gap, and the fast generated photoelectrons/holes separation and transfer. Here, we report the synthesis of thiophene‐based CTFs under mild conditions for photocatalytic oxidation of aromatic alcohols to the corresponding benzaldehydes using pure oxygen as the oxidant. Full conversion and a selectivity as high as 90 % to benzaldehyde were obtained paving the way for a potential application of these metal‐free photocatalysts in fine chemicals synthesis. |
536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
536 | _ | _ | |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) |0 G:(DE-Juel1)HITEC-20170406 |c HITEC-20170406 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Ditz, Daniel |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Zeng, Feng |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Alves Favaro, Marcelo |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Iemhoff, Andree |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Gupta, Kavita |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Hartmann, Heinrich |0 P:(DE-Juel1)166271 |b 6 |
700 | 1 | _ | |a Szczuka, Conrad |0 P:(DE-Juel1)179011 |b 7 |
700 | 1 | _ | |a Jakes, Peter |0 P:(DE-Juel1)156296 |b 8 |
700 | 1 | _ | |a Hausoul, Peter J. C. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Artz, Jens |0 P:(DE-HGF)0 |b 10 |e Corresponding author |
700 | 1 | _ | |a Palkovits, Regina |0 0000-0002-4970-2957 |b 11 |e Corresponding author |
773 | _ | _ | |a 10.1002/slct.202004115 |g Vol. 5, no. 45, p. 14438 - 14446 |0 PERI:(DE-600)2844262-3 |n 45 |p 14438 - 14446 |t ChemistrySelect |v 5 |y 2020 |x 2365-6549 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/888936/files/slct.202004115.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:888936 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)166271 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)179011 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 7 |6 P:(DE-Juel1)179011 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)156296 |
913 | 1 | _ | |a DE-HGF |b Energie |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Electrochemical Storage |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-08-22 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CHEMISTRYSELECT : 2018 |d 2020-08-22 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0 |0 LIC:(DE-HGF)CCBYNC4 |2 HGFVOC |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-08-22 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-08-22 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-08-22 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-08-22 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|