001     888936
005     20240712112814.0
024 7 _ |a 10.1002/slct.202004115
|2 doi
024 7 _ |a 2128/26973
|2 Handle
024 7 _ |a altmetric:95378596
|2 altmetric
024 7 _ |a WOS:000596036800028
|2 WOS
037 _ _ |a FZJ-2020-05335
082 _ _ |a 540
100 1 _ |a Liao, Longfei
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Efficient Photocatalytic Oxidation of Aromatic Alcohols over Thiophene‐based Covalent Triazine Frameworks with A Narrow Band Gap
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611416473_30479
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Photocatalytic selective oxidation of aromatic alcohols by covalent organic frameworks (COFs) is a sustainable strategy to replace present metal‐based heterogeneous catalytic oxidation systems. Covalent triazine‐based frameworks (CTFs), a subgroup of COFs, possess promising properties as efficient catalysts for photocatalytic oxidation. Sulfur‐containing metal‐free CTFs exhibit a good performance in photocatalysis due to their narrowed band gap, and the fast generated photoelectrons/holes separation and transfer. Here, we report the synthesis of thiophene‐based CTFs under mild conditions for photocatalytic oxidation of aromatic alcohols to the corresponding benzaldehydes using pure oxygen as the oxidant. Full conversion and a selectivity as high as 90 % to benzaldehyde were obtained paving the way for a potential application of these metal‐free photocatalysts in fine chemicals synthesis.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ditz, Daniel
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zeng, Feng
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Alves Favaro, Marcelo
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Iemhoff, Andree
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Gupta, Kavita
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hartmann, Heinrich
|0 P:(DE-Juel1)166271
|b 6
700 1 _ |a Szczuka, Conrad
|0 P:(DE-Juel1)179011
|b 7
700 1 _ |a Jakes, Peter
|0 P:(DE-Juel1)156296
|b 8
700 1 _ |a Hausoul, Peter J. C.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Artz, Jens
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
700 1 _ |a Palkovits, Regina
|0 0000-0002-4970-2957
|b 11
|e Corresponding author
773 _ _ |a 10.1002/slct.202004115
|g Vol. 5, no. 45, p. 14438 - 14446
|0 PERI:(DE-600)2844262-3
|n 45
|p 14438 - 14446
|t ChemistrySelect
|v 5
|y 2020
|x 2365-6549
856 4 _ |u https://juser.fz-juelich.de/record/888936/files/slct.202004115.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888936
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166271
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)179011
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-Juel1)179011
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)156296
913 1 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrochemical Storage
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMISTRYSELECT : 2018
|d 2020-08-22
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-22
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-22
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21