000888944 001__ 888944
000888944 005__ 20240712113232.0
000888944 0247_ $$2doi$$a10.1021/acsaem.0c01047
000888944 0247_ $$2Handle$$a2128/27091
000888944 0247_ $$2altmetric$$aaltmetric:88096556
000888944 0247_ $$2WOS$$aWOS:000563784400043
000888944 037__ $$aFZJ-2020-05343
000888944 082__ $$a540
000888944 1001_ $$0P:(DE-HGF)0$$aNogueira, André E.$$b0
000888944 245__ $$aCuO Decoration Controls Nb 2 O 5 Photocatalyst Selectivity in CO 2 Reduction
000888944 260__ $$aWashington, DC$$bACS Publications$$c2020
000888944 3367_ $$2DRIVER$$aarticle
000888944 3367_ $$2DataCite$$aOutput Types/Journal article
000888944 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611921110_9231
000888944 3367_ $$2BibTeX$$aARTICLE
000888944 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888944 3367_ $$00$$2EndNote$$aJournal Article
000888944 520__ $$aThe reformation of CO2 through photocatalytic processes to obtain products with high energy value and compatibility with the current energy infrastructure is a compelling strategy to minimize the emission of CO2 into the atmosphere, one of the main greenhouse gases. However, practical application of such a photocatalytic system requires significant efforts for improved CO2 photoreduction performance and product selectivity. Thus, in the present work, CuO nanoparticles were combined with Nb2O5 in order to improve the photocatalytic properties of these semiconductors in the CO2 photoreduction process. Nb2O5/CuO heterojunctions were prepared via a solvothermal treatment method, while the experimental tools, such as FESEM, HRTEM, and DRS, were employed to evaluate the microstructural and electronic properties. We describe how CuO decoration over Nb2O5 adjusts its selectivity for CO2 reduction to CH4, HCOOH, or H3CCOOH in different contents. An investigation of CO2 photoreduction using different electron donors/scavengers (water, sodium oxalate, and potassium bromate) under ultraviolet radiation revealed that its decoration influences local CO production by modifying the selectivity. CO has been confirmed as the main intermediate for HCOOH and CH3COOH production, and CO2 reduction efficiency increases at low CuO content (2.5% wt), leading to the formation of soluble hydrocarbons, and increases for CH4 in higher amounts (10% wt).
000888944 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000888944 588__ $$aDataset connected to CrossRef
000888944 7001_ $$0P:(DE-HGF)0$$aSilva, Gelson T. S. T.$$b1
000888944 7001_ $$0P:(DE-HGF)0$$aOliveira, Jéssica A.$$b2
000888944 7001_ $$0P:(DE-Juel1)184844$$aLopes, Osmando$$b3$$ufzj
000888944 7001_ $$0P:(DE-HGF)0$$aTorres, Juliana A.$$b4
000888944 7001_ $$0P:(DE-Juel1)145276$$aCarmo, Marcelo$$b5$$eCorresponding author$$ufzj
000888944 7001_ $$0P:(DE-Juel1)177079$$aRibeiro, Caue$$b6$$eCorresponding author
000888944 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.0c01047$$gVol. 3, no. 8, p. 7629 - 7636$$n8$$p7629 - 7636$$tACS applied energy materials$$v3$$x2574-0962$$y2020
000888944 8564_ $$uhttps://juser.fz-juelich.de/record/888944/files/Carmo_Marcelo_Ribeiro_Caue.pdf$$yPublished on 2020-07-27. Available in OpenAccess from 2021-07-27.
000888944 8564_ $$uhttps://juser.fz-juelich.de/record/888944/files/acsaem.0c01047.pdf$$yRestricted
000888944 909CO $$ooai:juser.fz-juelich.de:888944$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888944 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184844$$aForschungszentrum Jülich$$b3$$kFZJ
000888944 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145276$$aForschungszentrum Jülich$$b5$$kFZJ
000888944 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000888944 9132_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000888944 9141_ $$y2020
000888944 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000888944 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000888944 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-03
000888944 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000888944 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-03
000888944 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000888944 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000888944 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000888944 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000888944 920__ $$lyes
000888944 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000888944 9801_ $$aFullTexts
000888944 980__ $$ajournal
000888944 980__ $$aVDB
000888944 980__ $$aUNRESTRICTED
000888944 980__ $$aI:(DE-Juel1)IEK-14-20191129
000888944 981__ $$aI:(DE-Juel1)IET-4-20191129