001     888956
005     20230111074216.0
024 7 _ |a 10.1016/j.cnsns.2020.105624
|2 doi
024 7 _ |a 1007-5704
|2 ISSN
024 7 _ |a 1878-7274
|2 ISSN
024 7 _ |a 2128/26671
|2 Handle
024 7 _ |a WOS:000612163600001
|2 WOS
037 _ _ |a FZJ-2020-05355
082 _ _ |a 510
100 1 _ |a Zhang, Sainan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A speed-based model for crowd simulation considering walking preferences
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1634739698_19754
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To investigate the influence of the walking preferences on pedestrian movements, a modified collision-free speed model is proposed by considering the expectations of comfortable walking for a pedestrian. In the model, the walking directions of pedestrians are determined by taking human perception of comfort and preference for walking straight to their intended destinations into account. The restriction of walls in heading direction on pedestrian's walking is introduced to avoid potential collisions among pedestrians and obstacles. Model validation with respect to experimental data shows that our model performs better than the original model with regards to the trajectory's distribution and the velocity profile, and can effectively alleviate backward movements. Furthermore, the speed-density relation in corridor inferred from the new model fits the experimental data well and the model performs more accurately in simulating the flow-width relation in bottleneck scenario than the original collision-free speed model.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhang, Jun
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Chraibi, Mohcine
|0 P:(DE-Juel1)132077
|b 2
700 1 _ |a Song, Weiguo
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1016/j.cnsns.2020.105624
|g Vol. 95, p. 105624 -
|0 PERI:(DE-600)2085706-8
|p 105624 -
|t Communications in nonlinear science and numerical simulation
|v 95
|y 2021
|x 1007-5704
856 4 _ |u https://juser.fz-juelich.de/record/888956/files/sainanzhang2021.pdf
|y Published on 2020-11-27. Available in OpenAccess from 2022-11-27.
909 C O |o oai:juser.fz-juelich.de:888956
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132077
913 0 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-28
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMMUN NONLINEAR SCI : 2018
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21