Home > Publications database > A speed-based model for crowd simulation considering walking preferences > print |
001 | 888956 | ||
005 | 20230111074216.0 | ||
024 | 7 | _ | |a 10.1016/j.cnsns.2020.105624 |2 doi |
024 | 7 | _ | |a 1007-5704 |2 ISSN |
024 | 7 | _ | |a 1878-7274 |2 ISSN |
024 | 7 | _ | |a 2128/26671 |2 Handle |
024 | 7 | _ | |a WOS:000612163600001 |2 WOS |
037 | _ | _ | |a FZJ-2020-05355 |
082 | _ | _ | |a 510 |
100 | 1 | _ | |a Zhang, Sainan |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a A speed-based model for crowd simulation considering walking preferences |
260 | _ | _ | |a Amsterdam [u.a.] |c 2021 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1634739698_19754 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a To investigate the influence of the walking preferences on pedestrian movements, a modified collision-free speed model is proposed by considering the expectations of comfortable walking for a pedestrian. In the model, the walking directions of pedestrians are determined by taking human perception of comfort and preference for walking straight to their intended destinations into account. The restriction of walls in heading direction on pedestrian's walking is introduced to avoid potential collisions among pedestrians and obstacles. Model validation with respect to experimental data shows that our model performs better than the original model with regards to the trajectory's distribution and the velocity profile, and can effectively alleviate backward movements. Furthermore, the speed-density relation in corridor inferred from the new model fits the experimental data well and the model performs more accurately in simulating the flow-width relation in bottleneck scenario than the original collision-free speed model. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Zhang, Jun |0 P:(DE-HGF)0 |b 1 |e Corresponding author |
700 | 1 | _ | |a Chraibi, Mohcine |0 P:(DE-Juel1)132077 |b 2 |
700 | 1 | _ | |a Song, Weiguo |0 P:(DE-HGF)0 |b 3 |
773 | _ | _ | |a 10.1016/j.cnsns.2020.105624 |g Vol. 95, p. 105624 - |0 PERI:(DE-600)2085706-8 |p 105624 - |t Communications in nonlinear science and numerical simulation |v 95 |y 2021 |x 1007-5704 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/888956/files/sainanzhang2021.pdf |y Published on 2020-11-27. Available in OpenAccess from 2022-11-27. |
909 | C | O | |o oai:juser.fz-juelich.de:888956 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)132077 |
913 | 0 | _ | |a DE-HGF |b Key Technologies |l Supercomputing & Big Data |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Computational Science and Mathematical Methods |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-08-28 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-08-28 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-08-28 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-08-28 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-08-28 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMMUN NONLINEAR SCI : 2018 |d 2020-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-08-28 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-08-28 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-08-28 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-7-20180321 |k IAS-7 |l Zivile Sicherheitsforschung |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IAS-7-20180321 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|