000888959 001__ 888959
000888959 005__ 20241127124644.0
000888959 0247_ $$2doi$$a10.1016/j.jcou.2020.101410
000888959 0247_ $$2ISSN$$a2212-9820
000888959 0247_ $$2ISSN$$a2212-9839
000888959 0247_ $$2Handle$$a2128/26863
000888959 0247_ $$2altmetric$$aaltmetric:98945567
000888959 0247_ $$2WOS$$aWOS:000636251900009
000888959 037__ $$aFZJ-2020-05358
000888959 082__ $$a624
000888959 1001_ $$0P:(DE-Juel1)174596$$aSchorn, Felix$$b0$$eCorresponding author$$ufzj
000888959 245__ $$aThe Biogas-Oxyfuel Process as a Carbon Source for Power-to-Fuel Synthesis: Enhancing Availability while Reducing Separation Effort
000888959 260__ $$aAmsterdam ˜[u.a.]œ$$bElsevier$$c2021
000888959 3367_ $$2DRIVER$$aarticle
000888959 3367_ $$2DataCite$$aOutput Types/Journal article
000888959 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638249721_17592
000888959 3367_ $$2BibTeX$$aARTICLE
000888959 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888959 3367_ $$00$$2EndNote$$aJournal Article
000888959 520__ $$aProducing synthetic fuels via Power-to-Fuel processes requires hydrogen and a carbon source. To attain a sustainable fuel, both reactants must originate from a renewable source. For the carbon source, biogas plants offer substantial potential. Hence, this paper presents a new biogas-oxyfuel process that couples a biogas plant with Power-to-Fuel production and enables a decentralized and economical supply of biogenic carbon dioxide for the production of renewable methanol. By using the oxygen byproduct of the Power-to-Fuel synthesis in the oxyfuel combustion of a combined heat and power unit, a simple separation of the CO2 in the flue gas is made possible. To analyze the thermodynamic changes within the combustion engine when switching from regular to oxyfuel combustion, an AspenPlus model of the combined heat and power unit of a biogas plant is built up herein. Due to the higher heat capacity of the new working gas carbon dioxide in comparison to nitrogen, the ideal Otto engine cycle’s mechanical efficiency drops by percentage point. This drop in efficiency leads to a loss in revenue for the operator of the biogas plant. Together with the additional equipment expenditures for the CO2 separation, this loss is defined as the CO2 separation costs. For a retrofit of existing biogas plants with an installed electric power of 75−1000 kW, the CO2 separation costs are determined to be 88−33 €/t. The process shown therefore offers a promising way to deliver biogenic CO2 at low cost for decentralized Power-to-Fuel systems.
000888959 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000888959 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x1
000888959 536__ $$0G:(DE-HGF)POF4-1111$$a1111 - Effective System Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x2
000888959 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x3
000888959 588__ $$aDataset connected to CrossRef
000888959 7001_ $$0P:(DE-HGF)0$$aLohse, Dennis$$b1
000888959 7001_ $$0P:(DE-Juel1)207065$$aSamsun, Remzi Can$$b2$$ufzj
000888959 7001_ $$0P:(DE-Juel1)129902$$aPeters, Ralf$$b3$$ufzj
000888959 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b4$$ufzj
000888959 773__ $$0PERI:(DE-600)2710038-8$$a10.1016/j.jcou.2020.101410$$gVol. 45, p. 101410 -$$p101410 -$$tJournal of CO2 utilization$$v45$$x2212-9820$$y2021
000888959 8564_ $$uhttps://juser.fz-juelich.de/record/888959/files/Invoice_OAD0000092315.pdf
000888959 8564_ $$uhttps://juser.fz-juelich.de/record/888959/files/1-s2.0-S2212982020310404-main-1.pdf$$yOpenAccess
000888959 8767_ $$8OAD0000092315$$92021-01-04$$d2021-01-27$$eHybrid-OA$$jZahlung erfolgt$$zFZJ-2021-00022, Belegnr. 1200161798
000888959 909CO $$ooai:juser.fz-juelich.de:888959$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000888959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174596$$aForschungszentrum Jülich$$b0$$kFZJ
000888959 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)174596$$aRWTH Aachen$$b0$$kRWTH
000888959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000888959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207065$$aForschungszentrum Jülich$$b2$$kFZJ
000888959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129902$$aForschungszentrum Jülich$$b3$$kFZJ
000888959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b4$$kFZJ
000888959 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b4$$kRWTH
000888959 9130_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000888959 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000888959 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1111$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x1
000888959 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x2
000888959 9141_ $$y2021
000888959 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-27
000888959 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-27
000888959 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888959 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CO2 UTIL : 2018$$d2020-08-27
000888959 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CO2 UTIL : 2018$$d2020-08-27
000888959 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-27
000888959 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-27
000888959 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888959 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-27
000888959 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-27
000888959 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-27
000888959 920__ $$lyes
000888959 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000888959 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x1
000888959 9801_ $$aAPC
000888959 9801_ $$aFullTexts
000888959 980__ $$ajournal
000888959 980__ $$aVDB
000888959 980__ $$aI:(DE-Juel1)IEK-14-20191129
000888959 980__ $$aI:(DE-Juel1)IEK-3-20101013
000888959 980__ $$aAPC
000888959 980__ $$aUNRESTRICTED
000888959 981__ $$aI:(DE-Juel1)IET-4-20191129
000888959 981__ $$aI:(DE-Juel1)ICE-2-20101013
000888959 981__ $$aI:(DE-Juel1)IET-4-20191129