000888966 001__ 888966
000888966 005__ 20240711113854.0
000888966 0247_ $$2doi$$a10.1109/JPHOTOV.2020.3023506
000888966 0247_ $$2ISSN$$a2156-3381
000888966 0247_ $$2ISSN$$a2156-3403
000888966 0247_ $$2WOS$$aWOS:000582595800014
000888966 037__ $$aFZJ-2020-05365
000888966 082__ $$a530
000888966 1001_ $$0P:(DE-Juel1)165900$$aSteffens, Jonathan$$b0
000888966 245__ $$aInfluence of the Carbon Concentration on ( p ) Poly-SiC x Layer Properties With Focus on Parasitic Absorption in Front Side Poly-SiC x /SiO x Passivating Contacts of Solar Cells
000888966 260__ $$aNew York, NY$$bIEEE$$c2020
000888966 3367_ $$2DRIVER$$aarticle
000888966 3367_ $$2DataCite$$aOutput Types/Journal article
000888966 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611303731_18792
000888966 3367_ $$2BibTeX$$aARTICLE
000888966 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888966 3367_ $$00$$2EndNote$$aJournal Article
000888966 500__ $$aKein Post-Print verfügbar
000888966 520__ $$aPassivating contacts based on polycrystalline silicon (poly-Si) on an interfacial oxide are limited by parasitic absorption, which may be reduced by incorporation of foreign elements in the poly-Si layer. In this study, the influence of carbon incorporation in the concentration range of 6.9-21.5 at% on boron-doped polycrystalline silicon carbide (poly-SiCx) layer properties is investigated and interpreted in the context of an application as full-area passivating contact on the front side of a solar cell. For constant annealing parameters, higher carbon concentrations reduce the crystallinity of the layers. A high crystallinity in turn is confirmed to be a key parameter for the application in a solar cell as it ensures both low resistivity as well as low parasitic absorption. Low recombination current densities in the range of 7.2-12.2 fA/cm 2 are determined for all layers on interfacial oxides on planar surfaces, whereas the differences are rather related to variations in the boron concentration than to the carbon concentration or the deposition parameters. A reduction of the (p) poly-SiCx layer thickness down to 10 nm would yield a parasitic absorption current density of 1.13 ± 0.13 mA/cm 2 . Using this value and the lowest measured recombination current density, a simple model predicts a theoretical solar cell efficiency limit of 26.7 ± 0.2%.
000888966 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000888966 588__ $$aDataset connected to CrossRef
000888966 7001_ $$0P:(DE-HGF)0$$aWeit, Swetlana$$b1
000888966 7001_ $$0P:(DE-HGF)0$$aRinder, Johannes$$b2
000888966 7001_ $$00000-0002-2367-9955$$aGlatthaar, Raphael$$b3
000888966 7001_ $$0P:(DE-Juel1)139534$$aMoller, Soren$$b4$$eCorresponding author
000888966 7001_ $$0P:(DE-HGF)0$$aHahn, Giso$$b5
000888966 7001_ $$0P:(DE-HGF)0$$aTerheiden, Barbara$$b6
000888966 773__ $$0PERI:(DE-600)2585714-9$$a10.1109/JPHOTOV.2020.3023506$$gVol. 10, no. 6, p. 1624 - 1631$$n6$$p1624 - 1631$$tIEEE journal of photovoltaics$$v10$$x2156-3403$$y2020
000888966 8564_ $$uhttps://juser.fz-juelich.de/record/888966/files/09205910.pdf$$yRestricted
000888966 909CO $$ooai:juser.fz-juelich.de:888966$$pVDB
000888966 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139534$$aForschungszentrum Jülich$$b4$$kFZJ
000888966 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000888966 9141_ $$y2020
000888966 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-09
000888966 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-09
000888966 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-09
000888966 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-09
000888966 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-09
000888966 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-09
000888966 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE J PHOTOVOLT : 2018$$d2020-09-09
000888966 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-09
000888966 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-09
000888966 920__ $$lyes
000888966 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000888966 980__ $$ajournal
000888966 980__ $$aVDB
000888966 980__ $$aI:(DE-Juel1)IEK-4-20101013
000888966 980__ $$aUNRESTRICTED
000888966 981__ $$aI:(DE-Juel1)IFN-1-20101013