000888981 001__ 888981
000888981 005__ 20201230100831.0
000888981 0247_ $$2Handle$$a2128/26596
000888981 037__ $$aFZJ-2020-05368
000888981 041__ $$aEnglish
000888981 1001_ $$0P:(DE-Juel1)176840$$aMa, Yueling$$b0$$eCorresponding author$$ufzj
000888981 1112_ $$aAGU 2020 Fall Meeting$$cOnline$$d2020-12-01 - 2020-12-17$$wOnline
000888981 245__ $$aAn optimized indirect method to estimate groundwater table depth anomalies over Europe based on Long Short-Term Memory networks
000888981 260__ $$c2020
000888981 3367_ $$033$$2EndNote$$aConference Paper
000888981 3367_ $$2BibTeX$$aINPROCEEDINGS
000888981 3367_ $$2DRIVER$$aconferenceObject
000888981 3367_ $$2ORCID$$aCONFERENCE_POSTER
000888981 3367_ $$2DataCite$$aOutput Types/Conference Poster
000888981 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1609244610_9888$$xAfter Call
000888981 520__ $$aLong Short-Term Memory (LSTM) networks are a deep learning technology to exploit long-term dependencies in the input-output relationship, which has been observed in the response of groundwater dynamics to atmospheric and land surface processes. We introduced an indirect method based on LSTM networks to estimate monthly water table depth anomalies (wtd_a) across Europe from monthly precipitation anomalies (pr_a). The network has further been optimized by including supplementary hydrometeorological variables, which are routinely measured and available at large scales. The data were obtained from daily integrated hydraulic simulation results over Europe from 1996 to 2016, with a spatial resolution of 0.11° (Furusho-Percot et al., 2019), and separated into a training set, a validation set and a test set at individual pixels. We compared test performances of the LSTM networks locally at selected pixels in eight PRUDENCE regions with random combinations of monthly pr_a, evapotranspiration anomaly, and soil moisture anomaly (θ_a) as input variables. The optimal combination of input variables was pr_a and θ_a, and the networks with this combination achieved average test R^2 between 47.88% and 91.62% in areas with simulated wtd ≤ 3 m. Moreover, we found that introducing θ_a improved the ability of the trained networks to handle new data, indicating the substantial contribution of θ_a to explain groundwater state variation. Therefore, including information about θ_a is beneficial, for instance in the estimation of groundwater drought, and the proposed optimized method may be transferred to a real-time monitoring of groundwater drought at the continental scale using remotely sensed soil moisture observations.Furusho-Percot, C., Goergen, K., Hartick, C., Kulkarni, K., Keune, J. and Kollet, S.: Pan-European groundwater to atmosphere terrestrial systems climatology from a physically consistent simulation, Sci. data, 6(1), 320, doi:10.1038/s41597-019-0328-7, 2019.
000888981 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000888981 536__ $$0G:(EU-Grant)689443$$aERA-PLANET - The European network for observing our changing planet (689443)$$c689443$$fH2020-SC5-2015-one-stage$$x1
000888981 7001_ $$0P:(DE-Juel1)129506$$aMontzka, Carsten$$b1$$ufzj
000888981 7001_ $$0P:(DE-Juel1)177038$$aBayat, Bagher$$b2$$ufzj
000888981 7001_ $$0P:(DE-Juel1)151405$$aKollet, Stefan$$b3$$ufzj
000888981 8564_ $$uhttps://agu2020fallmeeting-agu.ipostersessions.com/default.aspx?s=C2-0F-E6-B5-74-26-9F-0B-3B-44-C8-A2-D3-74-AA-81#
000888981 8564_ $$uhttps://juser.fz-juelich.de/record/888981/files/IPoster.pdf$$yOpenAccess
000888981 909CO $$ooai:juser.fz-juelich.de:888981$$popenaire$$popen_access$$pVDB$$pdriver$$pec_fundedresources
000888981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176840$$aForschungszentrum Jülich$$b0$$kFZJ
000888981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129506$$aForschungszentrum Jülich$$b1$$kFZJ
000888981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177038$$aForschungszentrum Jülich$$b2$$kFZJ
000888981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151405$$aForschungszentrum Jülich$$b3$$kFZJ
000888981 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000888981 9141_ $$y2020
000888981 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888981 920__ $$lyes
000888981 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000888981 980__ $$aposter
000888981 980__ $$aVDB
000888981 980__ $$aUNRESTRICTED
000888981 980__ $$aI:(DE-Juel1)IBG-3-20101118
000888981 9801_ $$aFullTexts