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OBJECTIVE 
There is a lack of near real-time spatially continuous water table depth (wtd) observations over Europe. To
mitigate the potential influence of scarce wtd measured data on the European groundwater management, we
introduced an indirect method based on Long Short-Term Memory (LSTM) networks in a recent study
(https://hess.copernicus.org/preprints/hess-2020-382/)to estimate monthly wtd anomaly (wtd ) over Europe
using monthly precipitation anomaly (pr ) as input.

 

In this study, we included supplementary hydrometeorological variables (i.e., evapotranspiration anomaly, ET  and
soil moisture anomaly, θ ) as optional input, which are routinely measured and available at large scales from
remote sensing, to arrive at improved wtd  estimates.

 

Figure 1: An optimized indirect method based on Long Short-Term Memory networks to estimate wtda over Europe from other hydrometeorological

variables that have spatio-temporally continuous observations.

a

a

a

a

a
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STUDY AREA & DATA SET
This study focused on eight hydrometeorologically different regions within Europe, known as PRUDENCE
regions: Scandinavia (SC), British Isles (BI), Mid-Europe (ME), Eastern Europe (EA), France (FR), Alps (AL),
Iberian Peninsula (IB), and Mediterranean (MD).

 

Figure 3: Wtd [m] climatology over the European continent between 01/1996 and 12/2016 extracted from the TSMP-G2A data set. Areas bounded by the

thick black lines show PRUDENCE regions (i.e., SC: Scandinavia; BI: British Isles; ME: Mid-Europe; EA: Eastern Europe; FR: France; AL: Alps; IB: Iberian

Peninsula; MD: Mediterranean).

 

Using the equation below, monthly anomaly data were obtained from daily integrated hydraulic simulation results over
Europe (named the TSMP-G2A data set (https://www.nature.com/articles/s41597-019-0328-7)) from 01/1996 to 12/2016,
with a spatial resolution of 0.11° (~ 12.5 km, EUR-11). Note that to avoid future information from leaking into the
training process, we only used the data from 01/1996 to 12/2012 (i.e., the training period) to calculate the climatological
average and standard deviation values.

 

Monthly anomaly, v ,

 

 

where, v is the investigated variable, such as wtd; v  is monthly data of calculated from the TSMP-G2A data set; v  is the
climatological average of v  (i.e., averages of v  in January, February, …, December); v  is the climatological standard
deviation of v .
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EXPERIMENT DESIGN
In this study, we compared the performances of the LSTM networks with random combinations of pr , ET  and
θ  as input to obtain the optimal combination of input variables, and thus improved wtd  estimates.

 

Table 1: Combinations of input variables.

 

We categorized pixels in each PRUDENCE region into groups based on yearly averaged wtd calculated from
the TSMP-G2A wtd data from 1996 to 2016, and the categories are [unit: m]: 1) 0.0-1.0; 2) 1.0-2.0; 3) 2.0-3.0;
4) 3.0-4.0; 5) 4.0-5.0; 6) 5.0-6.0; 7) 6.0-7.0; 8) 7.0-8.0; 9) 8.0-9.0; 10) 9.0-10.0; 11)10.0-50.0. To save the
computing time, we randomly selected ≤ 200 pixels in each group to apply the LSTM-network-based method.

 

At individual pixels, the data were separated into:

a training set (01/1996 - 12/2012, totally 204 time steps) for network training;

a validation set (01/2013 - 12/2014, totally 24 time steps) for network validation;

a test set (01/2015 – 12/2016, totally 24 time steps) for network testing.

 

Figure 4 gives the workflow for the LSTM-network-based method to handle data at the individual pixel level.
Here we used the coefficient of determination (R ) as the evaluation metric.
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Figure 4: Workflow for the LSTM-network-based method to handle data at the individual pixel level.

 



KEY INSIGHTS & RESULTS 

Figure 5: Comparison of the average test R2 scores achieved by the LSTM networks with various input variable combinations: E1: pr ; E2: ET ; E3: θ ; E4:

pr  and ET ; E5: pr  and θ ; E6: ET  and θ ; and E7: pr , ET  and θ . a) - h) show the comparison in different categories of yearly averaged wtd in each

PRUDENCE region.

 

Findings:

For increasing yearly averaged wtd, the average test R  scores generally decreased for all the LSTM
networks, indicating a decrease in the network test performances;

There was a small contribution of ET  to the estimation of wtd over Europe;

The networks with θ  as one of their input variables (i.e., E3, E5, E6 and E7) outperformed the other variable combinations in
terms of test performances;

The optimal combination of input variables was pr  and θ  (i.e., E5, deep blue lines in Figure 5), and the networks with this
combination achieved average test R  between 47.88% and 91.62% in areas with simulated wtd ≤ 3 m.
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WHY LONG SHORT-TERM MEMORY NETWORKS?
LSTM networks are a special type of artificial neural networks:

with wide learning ability from observed data, showing great promise in modeling nonlinear and
complex relationships;

requiring minor physical background knowledge;

superior in exploiting long-term dependencies between sequences, which is expected in the lagged response of groundwater to
input hydrometeorological variables.

 

Due to limited data available at each pixel (i.e., a total of 252 time steps), we built small LSTM networks at the local scale,
having one input layer, one hidden layer, and one output layer.

 

Figure 2: One-hidden-layer LSTM network with one hidden neuron. The green lines indicate the entry points of new inputs into the hidden neuron. The blue

lines show the entry points of previous outputs into the hidden neuron, where w is the weight on a linkage; h(∗) is the output of the hidden neuron; x(t) is

the input at the time step t; and c(∗) is the cell state. σ represents a sigmoid function, and tanh is a hyperbolic tangent function.
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SUMMARY & CONCLUSIONS 
θ  substantially contributes to groundwater state variation, and thus, introducing information about θ  is
beneficial, for instance in the estimation of groundwater drought.

 

The optimized indirect method, i.e., the LSTM networks with pr  and θ  as input, highly improved monthly
wtd  estimates over Europe, especially in areas with simulated wtd ≤ 3 m.

 

The optimized indirect method may be transferred to a real-time monitoring of groundwater drought at the continental scale using
remotely sensed soil moisture observations.
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ABSTRACT
Long Short-Term Memory (LSTM) networks are a deep learning technology to exploit long-term dependencies in the input-
output relationship, which has been observed in the response of groundwater dynamics to atmospheric and land surface
processes. We introduced an indirect method based on LSTM networks to estimate monthly water table depth anomalies
(wtd ) across Europe from monthly precipitation anomalies (pr ). The network has further been optimized by including
supplementary hydrometeorological variables, which are routinely measured and available at large scales. The data were
obtained from daily integrated hydraulic simulation results over Europe from 1996 to 2016, with a spatial resolution of 0.11°
(Furusho-Percot et al., 2019), and separated into a training set, a validation set and a test set at individual pixels. We
compared test performances of the LSTM networks locally at selected pixels in eight PRUDENCE regions with random
combinations of monthly pr , evapotranspiration anomaly, and soil moisture anomaly (θ ) as input variables. The optimal
combination of input variables was pr  and θ , and the networks with this combination achieved average test R  between
47.88% and 91.62% in areas with simulated wtd ≤ 3 m. Moreover, we found that introducing θ  improved the ability of the
trained networks to handle new data, indicating the substantial contribution of θ  to explain groundwater state variation.
Therefore, including information about θ  is beneficial, for instance in the estimation of groundwater drought, and the
proposed optimized method may be transferred to a real-time monitoring of groundwater drought at the continental scale
using remotely sensed soil moisture observations.
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