001     888993
005     20240712112901.0
024 7 _ |a 10.1016/j.jprocont.2020.06.012
|2 doi
024 7 _ |a 0959-1524
|2 ISSN
024 7 _ |a 1873-2771
|2 ISSN
024 7 _ |a 2128/26599
|2 Handle
024 7 _ |a WOS:000567786500021
|2 WOS
037 _ _ |a FZJ-2020-05380
082 _ _ |a 004
100 1 _ |a Vaupel, Yannic
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Accelerating nonlinear model predictive control through machine learning
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1609245469_13522
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The high computational requirements of nonlinear model predictive control (NMPC) are a long-standing issue and, among other methods, learning the control policy with machine learning (ML) methods has been proposed in order to improve computational tractability. However, these methods typically do not explicitly consider constraint satisfaction. We propose two methods based on learning the optimal control policy by an artificial neural network (ANN) and using this for initialization to accelerate computations while meeting constraints and achieving good objective function value. In the first, the ANN prediction serves as the initial guess for the solution of the optimal control problem (OCP) solved in NMPC. In the second, the ANN prediction is improved by solving a single quadratic program (QP). We compare the performance of the two proposed strategies against two benchmarks representing the extreme cases of (i) solving the NMPC problem to convergence using the shift-initialization strategy and (ii) implementing the controls predicted by the ANN prediction without further correction to reduce the computational delay. We find that the proposed ANN initialization strategy mostly results in the same control policy as the shift-initialization strategy. The computational times are on average 45% longer but the maximum time is42% smaller and the distribution is tighter, thus more predictable. The proposed QP-based method yields a good compromise between finding the optimal control policy and solution time. Closed-loop infeasibilities are negligible and the objective function is typically greatly improved as compared to benchmark (ii). The computational time required for the necessary second-order sensitivity integration is typically an order of magnitude smaller than for solving the NMPC problem to convergence. Previous article in issue
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hamacher, Nils C.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Caspari, Adrian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mhamdi, Adel
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kevrekidis, Ioannis G.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.jprocont.2020.06.012
|g Vol. 92, p. 261 - 270
|0 PERI:(DE-600)2000438-2
|p 261 - 270
|t Journal of process control
|v 92
|y 2020
|x 0959-1524
856 4 _ |u https://juser.fz-juelich.de/record/888993/files/JPROCONT_2019_618_Rev2.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888993
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PROCESS CONTR : 2018
|d 2020-09-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21