

JUWELS BOOSTER EARLY ACCESS PROGRAM ENABLING 1ST APPLICATIONS FOR EUROPE'S #1 SYSTEM

17 December 2020 | Andreas Herten | JSC EoYC 2020; Jülich Supercomputing Centre, Forschungszentrum Jülich

JUWELS Overall Architecture

JUWELS Cluster (2018)

- 2511 compute nodes (2× Skylake)
- 48 GPU nodes (4× V100 w/ NVLink2)
- Mellanox EDR 100 Gbit/s network, fat-tree topology (1:2@L1)
- 12 PFLOP/s

JUWELS Booster (2020)

- 936 compute nodes (2× AMD Rome, 4× A100 w/ NVLink3)
- Mellanox HDR 200 Gbit/s network, DragonFly+ topology
- 73 PFLOP/s

JUWELS Overall Architecture

Top500 Nov-2020: #1 Europe #7 World #3* Green500

- JUWELS Booster (2020)
 - 936 compute nodes (2× AMD Rome, 4× A100 w/ NVLink3)
 - Mellanox HDR 200 Gbit/s network, DragonFly+ topology
 - 73 PFLOP/s

JUWELS Overall Architecture

Overview

- Started in early 2020
- Selected 14 applications from various scientific domains
 - Aimed for applications that could use JUWELS Booster at scale
 - Some teams already use JUWELS Cluster, others new
- Offer: Use JUWELS Booster before general access; Request: Help improve system
- Endeavor of many parts in JSC and beyond
 - NVIDIA Application Lab: Steering, GPU optimization, application support, system support
 - Application support, Simulation Labs
 - Performance Optimisation and Productivity team
 - System operations team
 - Vendors: NVIDIA, ParTec, Atos

Timeline to Booster

Preparation Timeline

Timeline to Booster

- Preparation Timeline
- Additionally: events

Timeline to Booster

- Preparation Timeline
- Additionally: events

Applications I

Climate/Meteo/Hydro (ESM)

ICON Next-Generation Physical Weather and

MPI Met: Luis Kornblueh; NVIDIA: Dmitry Alexeev

MPTRAC Massive Parallel Trajectory Calculations of Volcanic Emissions

👑 JSC: Sabine Grießbach, Lars Hoffmann

ParFlow Surface, Soil, Ground Water Flow

🕍 IBG-3: Jaro Hokkanen, Stefan Kollet

Biological Matter

Amber * Drug Binding over Biologically Relevant Timescales (MD)

SINGLE STATE STATE

U Göttingen: Ludwig Schneider, Niklas Blagojevic

Applications I

Climate/Meteo/Hydro (ESM)

Scarlet Stadtler

ICON Next-Generation Physical Weather and Climate Models

MPI Met: Luis Kornblueh; NVIDIA: Dmitry Alexeev

MPTRAC Massive Parallel Trajectory Calculations of Volcanic Emissions

📸 JSC: Sabine Grießbach, Lars Hoffmann

ParFlow Surface, Soil, Ground Water Flow

👑 IBG-3: Jaro Hokkanen, Stefan Kollet

Biological Matter

Amber * Drug Binding over Biologically Relevant Timescales (MD)

SC/HHU: Holger Gohlke, Christopher Pfleger, Michele Bonus

U Göttingen: Ludwig Schneider, Niklas Blagojevic

Member of the Helmholtz Association 17 December 2020 Slide 5120

Applications II

PIConGPIT Plasma Simulations for Next Generation Lattice OCD Particle Accelerators (Plasma) Bonn Flavour Singlet Structure of Hadrons 💒 HZDR: Alexander Debus, Anton Lebedev, 🐸 U Bonn: Simone Bacchio, Bartosz Rene Widera, Michael Bussmann Kostrzewa, Carsten Urbach JUQCS-G * Simulating Universal Quantum Computer Wuppertal SignQCD - Studying the Hottest (Quantum) Man-made Liquid JSC: Hans De Raedt, Kristel Michielsen. 👺 U Wuppertal: Szabolcs Borsányi, Dennis Willsch Kalman Szabo E-train Wunderstanding Learning Processes in Brain (Neuro) Matter 🐸 U Graz: Franz Scherr, Wolfgang Maass; U 🐸 U Bielefeld: Christian Schmit, Dennis Sussex: James Knight; INM-6: Sacha van Bollweg, Frithjof Karsch Alhada Regensburg

Baryons with Charm NBODY6++GPU Representation NBODY6++GPU Property and Peter Boyle, Christoph Lehner, Gravitational Waves (Astro) Gunnar Bali, Sara Collins W U Heidelberg: Rainer Spurzem

Applications II

PIConGPU * Plasma Simulations for Next Generation			Lattice QCD	
JUOCS-G	Particle Accelerators (Pla HZDR: Alexander Debi Rene Widera, Michael Bu Simulating Universal C	us, Anton Lebedev, ssmann	Bonn	 Flavour Singlet Structure of Hadrons U Bonn: Simone Bacchio, Bartosz Kostrzewa, Carsten Urbach
	(Quantum)	C	Wuppertal	5 2 7 5
E Austra	JSC: Hans De Raedt, K Dennis Willsch	ightarrow Details on each	ch app online	Mor-made Liquid Wuppertal: Szabolcs Borsányi, nan Szabo
E-train	 ☼ Understanding Learning Brain (Neuro) ☼ U Graz: Franz Scherr, N Sussex: James Knight; IN Albada 	Wolfgang Maass; U	Bielefeld	 HotQCD – Studying Extreme States of Matter U Bielefeld: Christian Schmit, Dennis Bollweg, Frithjof Karsch
NBODY6+	+GPU 🜸 Dense Star Clust Gravitational Waves (Astr 👑 U Heidelberg: Rainer S	o)	Regensburg	Baryons with CharmPeter Boyle, Christoph Lehner,Gunnar Bali, Sara Collins

Member of the Helmholtz Association 17 December 2020 Slide 6120

To my knowledge and opinion

ESM:DeepACF	JUQCS-G

ESM:ICON E-train

ESM:MPTRAC PIConGPU

ESM:ParFlow LQCD:Bonn

Bio:Amber LQCD:Wuppertal

Bio:SOMA LQCD:Bielefeld

NBODY6++GPU LQCD:Regensburg

To my knowledge and opinion

ESM:DeepACF JUQCS-G

ESM:ICON E-train

ESM:MPTRAC PIConGPU

ESM:ParFlow LQCD:Bonn

Bio:Amber LQCD:Wuppertal

Bio:SOMA LQCD:Bielefeld

NBODY6++GPU LQCD:Regensburg

Programming Mode

To my knowledge and opinion

ESM:DeepACF

ESM:ICON

ESM:MPTRAC

FSM:ParFlow

Bio:Amber

Bio:SOMA

NBODY6++GPU

JUOCS-G

E-train

PIConGPU

LOCD:Bonn

LQCD:Wuppertal LOCD:Bielefeld

LQCD:Regensburg

To my knowledge and opinion

Member of the Helmholtz Association

Slide 7120

17 December 2020

Lessons Learned

- EA Program had to be tailored individually around each application
- Regular/fast updates of development environment was necessary and helpful
- Knowledge dissemination programs well-liked (talks, newsletter, overview) documentations, chat)
- Challenging to schedule EA runs, bug hunts, and low-level system tests at same time
- EA Program very well received (large number of teams, 380 000 h_{node} consumed)

Early Performance Results

Disclaimer

- Following results obtained on fresh JUWELS Booster
- ...while system integration work was done at same time
- System is being be tuned and improved
- ...also due to results obtained by EA applications!
- Software used
 - GCC 9.3.0
 - CUDA 11.0 (with CUDA Driver 450.80.02)
 - NVHPC 20.7
 - ParaStationMPI 5.4.7 (with UCX 1.8.1)

Slide 10120

Soft Matter: SOMA

- SOMA: Soft, coarse-grained Monte-Carlo Acceleration
 L. Schneider and M. Müller, Comput. Phys. Commun. 235C 463–476 (2019) and GPU Seminar Talk
- Kinetics of nanomaterial formation; multi-component polymer systems (battery materials, membranes, ...)
- Unique: Resolve details of polymer, but study lengths relevant to engineering
- "Team: L. Schneider, N. Blagojevic, L. Pigard, M. Müller, et al

- ightarrow gitlab.com/InnocentBug/SOMA/
 - C, OpenACC, MPI
 - Frequent JUWELS user

SOMA Performance Results

Comparison of GPU Generations

- Long experience with various GPU architectures
- → Update to new generations early!
 - Some algorithmic changes between generations; also feature additions
 - PTPS: Particle
 Timesteps Per Second

SOMA Performance Results

New Method for Scaling

- Scale of Booster: New algorithms, implementations with more scalability!
- New project for Booster: String Method
- String-coupled SOMA ensemble simulation
- Master thesis of N. Blagojevic

Earth-system modelling: ParFlow

 ParFlow: Numerical model for groundwater and surface water flow

J. Hokkanen, S. Kollet, et al, EGU General Assembly 2020, 4–8 May 2020, EGU2020-12904, and GPU Seminar Talk

- Model hydrologic processes, hill-slope to continental scale; forecasting, water cycle research, climate change; since 1990s
- Finite-difference scheme with implicit time integration
- **Team: J. Hokkanen, S. Kollet
- ightarrow parflow.org
 - C, C++, CUDA, MPI
 - Fresh GPU port in prepartion for Booster

ParFlow Performance Results

Single-Node Performance

- Comparing CPU of Booster node with GPUs
- Good speed-up, max. 29×
- Memory pool (RMM) gives extra boost
- Larger problem sizes solvable per node

ParFlow Performance Results

Weak Scaling

- Fixed problem size per node
- 26× speed-up achieved over $\mathcal{O}(100)$ nodes

Quantum Computing: JUQCS

- JUQCS: Jülich Universal Quantum Computer Simulator De Raedt et al., Comp. Phys. Comm. 237 47-61 (2019)
- Universal quantum computing on digital computer
- Network-, memory-intensive computations
- **Team: Research group Quantum Information Processing
- Fortran, CUDA Fortran
- Frequent JUWELS user

JUQCS

• 40 qubits:

- > 16 TiB memory needed → 512 A100s
- Each quantum operation: Update states, 8 TB transfer
- Weak scaling: Compute constant, MPI as expected
- Strong scaling: Still investigate DragonFly+ topology

Summary and Conclusions

- JUWELS Booster: European flagship system based on A100 GPUs
- In production since end of November, applications prepared through Early Access Program
- Early performance results are very encouraging

- JUWELS Booster: European flagship system based on A100 GPUs
- In production since end of November, applications prepared through Early Access Program
- Early performance results are very encouraging
- Early Access Colloquium 20 January 2021: https://indico-jsc.fz-juelich.de/event/166/

- JUWELS Booster: European flagship system based on A100 GPUs
- In production since end of November, applications prepared through Early Access Program
- Early performance results are very encouraging
- Early Access Colloquium 20 January 2021: https://indico-jsc.fz-juelich.de/event/166/

Acknowledgments

- JSC Application-Oriented Technology Development: Kaveh Haghighi-Mood
- JSC High Performance Systems: Dorian Krause, Damian Alvarez, Benedikt von St. Vieth
- NVIDIA Collaborators: Markus Hrywniak, Jiri Kraus, Mathias Wagner

Participants of Early Access Program, especially

SOMA Ludwig Schneider, Louis Pigard, Niklas Blagojevic

ParFlow Jaro Hokkanen

JuQCS Hans De Raedt

- JUWELS Booster: European flagship system based on A100 GPUs
- In production since end of November, applications prepared through Early Access Program
- Early performance results are very encouraging
- Early Access Colloquium 20 January 2021: https://indico-jsc.fz-juelich.de/event/166/

Thank you for your attention! a.herten@fz-juelich.de

Acknowledgments

- JSC Application-Oriented Technology Development: Kaveh Haghighi-Mood
- JSC High Performance Systems: Dorian Krause, Damian Alvarez, Benedikt von St. Vieth
- NVIDIA Collaborators: Markus Hrywniak, Jiri Kraus, Mathias Wagner

Participants of Early Access Program, especially

SOMA Ludwig Schneider, Louis Pigard, Niklas Blagojevic

ParFlow Jaro Hokkanen

JuQCS Hans De Raedt

Appendix

Appendix

Network Performance

SOMA Supplementary

LQCD: Bonn

References

Appendix Network Performance

Network Performance

OSU Micro-Benchmarks: Bandwidth

- OSU Microbenchmarks: device-device bandwidth (osu bw D D)
- Good results, expected limiters
- Intra-node: NVLink3 bandwidth
- Inter-node: HDR200 bandwidth
- Model fits show2 regimes (---/ ---)

SOMA Supplementary

Appendix

SOMA Supplementary

Kernel Comparison: Memory Chart

- Many random accesses
- → Benefit from larger L1, L2 caches
- → More FP64 throughput
 - Knock-on effect: less memory traffic
 - Kernel runtime:

V100 25.8 ms A100 21.5 ms

A100*

18.9 ms

Appendix LQCD: Bonn

LQCD: Bonn

- ETMC: Extended Twisted Mass Collaboration
 C. Alexandrou and S. Bacchio et al, Phys. Rev. D 101 094513 (2020)
- Study of the Flavour Singlet Structure of Hadrons
- **Team: S. Bacchio, B. Kostrzewa, et al; Uni Bonn, Uni Cyprus, Cyprus Institute, Uni Rome, ...
- → github.com/etmc, PLEGMA, QUDA, tmLQCD
 - C/C++, CUDA, MPI, OpenMP
 - Frequent JUWELS user

LQCD: Bonn

Comparison of GPU HPC Machines

- Multigrid inversion
- Mean time-to-solution, spread
- Systems
 Piz Daint Haswell,
 P100; DragonFly
 Marconi100 POWER9,
 V100; DragonFly+
- JUWELS Booster: Low time to solution; but large spread (being investigated)

Appendix

References

References I

[6] Hans De Raedt et al. "Massively parallel quantum computer simulator, eleven years later." In: Computer Physics Communications 237 (2019), pp. 47–61. ISSN: 0010-4655. DOI: https://doi.org/10.1016/j.cpc.2018.11.005. URL: http://www.sciencedirect.com/science/article/pii/S0010465518303977 (page 28).

References: Images, Graphics I

- Forschungszentrum Jülich GmbH (Ralf-Uwe Limbach). JUWELS Booster. Christmasified [1] by Michael Bresser.
- Forschungszentrum Jülich GmbH (Ralf-Uwe Limbach). JUWELS Cluster. [2]
- [3] Forschungszentrum Jülich GmbH (Ralf-Uwe Limbach). JUWELS Booster.
- [4] SpaceX. Falcon Rocket in Sunrise. Freely available at Unsplash. URL: https://unsplash.com/photos/PdeP2ZxooVo.
- NASA. Nov. 14. 1969 Apollo 12 Liftoff. The Apollo 12 space vehicle is launched from [5] Kennedy Space Center (KSC), at 11:22 a.m. (EST), Nov. 14, 1969. Apollo 12 was the United States' second lunar landing mission. URL:
 - https://www.nasa.gov/image-feature/apollo-12-liftoff.

References: Images, Graphics II

[7] NASA/Carl Winebarger. Atlantis Breaks Through the Clouds. Space shuttle Atlantis emerges through the clouds. Liftoff on its STS-129 mission on Nov. 16, 2009. URL: https://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/multimedia/gallery/09-11-16-5.html.