001     889011
005     20210425193443.0
024 7 _ |a 10.1038/s41586-020-2934-0
|2 doi
024 7 _ |a 0028-0836
|2 ISSN
024 7 _ |a 1476-4687
|2 ISSN
024 7 _ |a 2128/27064
|2 Handle
024 7 _ |a altmetric:94919211
|2 altmetric
024 7 _ |a 33239797
|2 pmid
024 7 _ |a WOS:000603059500011
|2 WOS
037 _ _ |a FZJ-2020-05386
082 _ _ |a 500
100 1 _ |a Agostini, M.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun
260 _ _ |a London [u.a.]
|c 2020
|b Nature Publ. Group78092
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1619337458_9736
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For most of their existence, stars are fuelled by the fusion of hydrogen into helium. Fusion proceeds via two processes that are well understood theoretically: the proton–proton (pp) chain and the carbon–nitrogen–oxygen (CNO) cycle. Neutrinos that are emitted along such fusion processes in the solar core are the only direct probe of the deep interior of the Sun. A complete spectroscopic study of neutrinos from the pp chain, which produces about 99 per cent of the solar energy, has been performed previously; however, there has been no reported experimental evidence of the CNO cycle. Here we report the direct observation, with a high statistical significance, of neutrinos produced in the CNO cycle in the Sun. This experimental evidence was obtained using the highly radiopure, large-volume, liquid-scintillator detector of Borexino, an experiment located at the underground Laboratori Nazionali del Gran Sasso in Italy. The main experimental challenge was to identify the excess signal—only a few counts per day above the background per 100 tonnes of target—that is attributed to interactions of the CNO neutrinos. Advances in the thermal stabilization of the detector over the last five years enabled us to develop a method to constrain the rate of bismuth-210 contaminating the scintillator. In the CNO cycle, the fusion of hydrogen is catalysed by carbon, nitrogen and oxygen, and so its rate—as well as the flux of emitted CNO neutrinos—depends directly on the abundance of these elements in the solar core. This result therefore paves the way towards a direct measurement of the solar metallicity using CNO neutrinos. Our findings quantify the relative contribution of CNO fusion in the Sun to be of the order of 1 per cent; however, in massive stars, this is the dominant process of energy production. This work provides experimental evidence of the primary mechanism for the stellar conversion of hydrogen into helium in the Universe.
536 _ _ |a 612 - Cosmic Matter in the Laboratory (POF3-612)
|0 G:(DE-HGF)POF3-612
|c POF3-612
|f POF III
|x 0
536 _ _ |a Solar and Geo-neutrino Analysis with Borexino (jikp20_20190501)
|0 G:(DE-Juel1)jikp20_20190501
|c jikp20_20190501
|f Solar and Geo-neutrino Analysis with Borexino
|x 1
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Particle Physics
|0 V:(DE-MLZ)SciArea-230
|2 V:(DE-HGF)
|x 0
700 1 _ |a Altenmüller, K.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Appel, S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Atroshchenko, V.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bagdasarian, Z.
|0 P:(DE-Juel1)156420
|b 4
|u fzj
700 1 _ |a Basilico, D.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bellini, G.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Benziger, J.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Biondi, R.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Bravo, D.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Caccianiga, B.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Calaprice, F.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Caminata, A.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Cavalcante, P.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Chepurnov, A.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a D’Angelo, D.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Davini, S.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Derbin, A.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Di Giacinto, A.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Di Marcello, V.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Ding, X. F.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Di Ludovico, A.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Di Noto, L.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Drachnev, I.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Formozov, A.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Franco, D.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Galbiati, C.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Ghiano, C.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Giammarchi, M.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Goretti, A.
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Göttel, A. S.
|0 P:(DE-HGF)0
|b 30
|e Corresponding author
700 1 _ |a Gromov, M.
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Guffanti, D.
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Ianni, Aldo
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Ianni, Andrea
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Jany, A.
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Jeschke, D.
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Kobychev, V.
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Korga, G.
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Kumaran, Sindhujha
|0 P:(DE-Juel1)173900
|b 39
700 1 _ |a Laubenstein, M.
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Litvinovich, E.
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Lombardi, P.
|0 P:(DE-HGF)0
|b 42
700 1 _ |a Lomskaya, I.
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Ludhova, Livia
|0 P:(DE-Juel1)168122
|b 44
700 1 _ |a Lukyanchenko, G.
|0 P:(DE-HGF)0
|b 45
700 1 _ |a Lukyanchenko, L.
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Machulin, I.
|0 P:(DE-HGF)0
|b 47
700 1 _ |a Martyn, J.
|0 P:(DE-HGF)0
|b 48
700 1 _ |a Meroni, E.
|0 P:(DE-HGF)0
|b 49
700 1 _ |a Meyer, M.
|0 P:(DE-HGF)0
|b 50
700 1 _ |a Miramonti, L.
|0 P:(DE-HGF)0
|b 51
700 1 _ |a Misiaszek, M.
|0 P:(DE-HGF)0
|b 52
700 1 _ |a Muratova, V.
|0 P:(DE-HGF)0
|b 53
700 1 _ |a Neumair, B.
|0 P:(DE-HGF)0
|b 54
700 1 _ |a Nieslony, M.
|0 P:(DE-HGF)0
|b 55
700 1 _ |a Nugmanov, R.
|0 P:(DE-HGF)0
|b 56
700 1 _ |a Oberauer, L.
|0 P:(DE-HGF)0
|b 57
700 1 _ |a Orekhov, V.
|0 P:(DE-HGF)0
|b 58
700 1 _ |a Ortica, F.
|0 P:(DE-HGF)0
|b 59
700 1 _ |a Pallavicini, M.
|0 P:(DE-HGF)0
|b 60
700 1 _ |a Papp, L.
|0 P:(DE-HGF)0
|b 61
700 1 _ |a Pelicci, Luca
|0 P:(DE-Juel1)186943
|b 62
700 1 _ |a Penek, Ö.
|0 P:(DE-Juel1)171602
|b 63
|u fzj
700 1 _ |a Pietrofaccia, L.
|0 P:(DE-HGF)0
|b 64
700 1 _ |a Pilipenko, N.
|0 P:(DE-HGF)0
|b 65
700 1 _ |a Pocar, A.
|0 P:(DE-HGF)0
|b 66
700 1 _ |a Raikov, G.
|0 P:(DE-HGF)0
|b 67
700 1 _ |a Ranalli, M. T.
|0 P:(DE-HGF)0
|b 68
700 1 _ |a Ranucci, G.
|0 P:(DE-HGF)0
|b 69
700 1 _ |a Razeto, A.
|0 P:(DE-HGF)0
|b 70
700 1 _ |a Re, A.
|0 P:(DE-HGF)0
|b 71
700 1 _ |a Redchuk, Mariia
|0 P:(DE-Juel1)171322
|b 72
700 1 _ |a Romani, A.
|0 P:(DE-HGF)0
|b 73
700 1 _ |a Rossi, N.
|0 P:(DE-HGF)0
|b 74
700 1 _ |a Schönert, S.
|0 P:(DE-HGF)0
|b 75
700 1 _ |a Semenov, D.
|0 P:(DE-HGF)0
|b 76
700 1 _ |a Settanta, G.
|0 P:(DE-Juel1)180506
|b 77
|u fzj
700 1 _ |a Skorokhvatov, M.
|0 P:(DE-HGF)0
|b 78
700 1 _ |a Singhal, Apeksha
|0 P:(DE-Juel1)180507
|b 79
700 1 _ |a Smirnov, O.
|0 P:(DE-HGF)0
|b 80
700 1 _ |a Sotnikov, A.
|0 P:(DE-HGF)0
|b 81
700 1 _ |a Suvorov, Y.
|0 P:(DE-HGF)0
|b 82
700 1 _ |a Tartaglia, R.
|0 P:(DE-HGF)0
|b 83
700 1 _ |a Testera, G.
|0 P:(DE-HGF)0
|b 84
700 1 _ |a Thurn, J.
|0 P:(DE-HGF)0
|b 85
700 1 _ |a Unzhakov, E.
|0 P:(DE-HGF)0
|b 86
700 1 _ |a Villante, F. L.
|0 P:(DE-HGF)0
|b 87
700 1 _ |a Vishneva, A.
|0 P:(DE-HGF)0
|b 88
700 1 _ |a Vogelaar, R. B.
|0 P:(DE-HGF)0
|b 89
700 1 _ |a von Feilitzsch, F.
|0 P:(DE-HGF)0
|b 90
700 1 _ |a Wojcik, M.
|0 P:(DE-HGF)0
|b 91
700 1 _ |a Wurm, M.
|0 P:(DE-HGF)0
|b 92
700 1 _ |a Zavatarelli, S.
|0 P:(DE-HGF)0
|b 93
700 1 _ |a Zuber, K.
|0 P:(DE-HGF)0
|b 94
700 1 _ |a G. Zuzel, K.
|0 P:(DE-HGF)0
|b 95
773 _ _ |a 10.1038/s41586-020-2934-0
|g Vol. 587, no. 7835, p. 577 - 582
|0 PERI:(DE-600)1413423-8
|n 7835
|p 577 - 582
|t Nature
|v 587
|y 2020
|x 1476-4687
856 4 _ |u https://juser.fz-juelich.de/record/889011/files/s41586-020-2934-0.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/889011/files/2006.15115.pdf
|y Published on 2020-11-25. Available in OpenAccess from 2021-05-25.
|z StatID:(DE-HGF)0510
909 C O |o oai:juser.fz-juelich.de:889011
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156420
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 30
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 30
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 39
|6 P:(DE-Juel1)173900
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 39
|6 P:(DE-Juel1)173900
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 44
|6 P:(DE-Juel1)168122
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 44
|6 P:(DE-Juel1)168122
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 62
|6 P:(DE-Juel1)186943
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 62
|6 P:(DE-Juel1)186943
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 63
|6 P:(DE-Juel1)171602
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 72
|6 P:(DE-Juel1)171322
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 72
|6 P:(DE-Juel1)171322
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 77
|6 P:(DE-Juel1)180506
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 79
|6 P:(DE-Juel1)180507
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 79
|6 P:(DE-Juel1)180507
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Universum
|1 G:(DE-HGF)POF3-610
|0 G:(DE-HGF)POF3-612
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Cosmic Matter in the Laboratory
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a IF >= 40
|0 StatID:(DE-HGF)9940
|2 StatID
|b NATURE : 2018
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2020-08-28
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2020-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NATURE : 2018
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-28
920 1 _ |0 I:(DE-Juel1)IKP-2-20111104
|k IKP-2
|l Experimentelle Hadrondynamik
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IKP-2-20111104
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21