000889017 001__ 889017
000889017 005__ 20240708133209.0
000889017 0247_ $$2doi$$a10.1016/j.fusengdes.2020.111948
000889017 0247_ $$2ISSN$$a0920-3796
000889017 0247_ $$2ISSN$$a1873-7196
000889017 0247_ $$2Handle$$a2128/26589
000889017 0247_ $$2WOS$$aWOS:000580835200062
000889017 037__ $$aFZJ-2020-05391
000889017 082__ $$a530
000889017 1001_ $$0P:(DE-Juel1)169640$$aIvashov, Ilia$$b0$$eCorresponding author$$ufzj
000889017 245__ $$aTFC-PREDIM: A FE dimensioning procedure for the TF coil system of a DEMO tokamak reactor
000889017 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2020
000889017 3367_ $$2DRIVER$$aarticle
000889017 3367_ $$2DataCite$$aOutput Types/Journal article
000889017 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1609238550_9888
000889017 3367_ $$2BibTeX$$aARTICLE
000889017 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889017 3367_ $$00$$2EndNote$$aJournal Article
000889017 520__ $$aThe equatorial plane of the inner leg of a toroidal field (TF) coil is the most stressed part of the TF coil system and optimal usage of the radial space in this region is crucial for the design of the DEMO tokamak reactor. A procedure for initial dimensioning (pre-dimensioning) of this region developed earlier [1] is based on a simplified 2D geometry of the TF coil cross-section and a semi-analytical approach to estimate stresses in the TF coil case and the conductor jackets with limited capabilities for optimization. This work presents a new procedure named TFC-PREDIM which features a detailed 2D finite element (FE) generalized plane strain model. The model gives very accurate results within a short calculation time and allows additional options for layout optimization. The FE model for the cross-section is generated automatically from the input geometrical parameters of the given layout allowing any of the conductor design options currently investigated for DEMO. The post-processing of the results is also automated, consisting in the determination of the maximum values of the membrane and membrane + bending Tresca stresses for each conductor jacket and for the TF coil case. Two strategies for the optimization of the cross-section are presented: minimization of the TF coil radial build with a predefined maximal toroidal field and maximization of the maximal toroidal field for a predefined radial space.
000889017 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000889017 588__ $$aDataset connected to CrossRef
000889017 7001_ $$0P:(DE-Juel1)129967$$aBiel, Wolfgang$$b1
000889017 7001_ $$0P:(DE-Juel1)4596$$aMertens, Philippe$$b2
000889017 773__ $$0PERI:(DE-600)1492280-0$$a10.1016/j.fusengdes.2020.111948$$gVol. 159, p. 111948 -$$p111948 -$$tFusion engineering and design$$v159$$x0920-3796$$y2020
000889017 8564_ $$uhttps://juser.fz-juelich.de/record/889017/files/postprint_Ivashov_TFC-PREDIM.pdf$$yPublished on 2020-09-08. Available in OpenAccess from 2022-09-08.
000889017 909CO $$ooai:juser.fz-juelich.de:889017$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889017 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169640$$aForschungszentrum Jülich$$b0$$kFZJ
000889017 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129967$$aForschungszentrum Jülich$$b1$$kFZJ
000889017 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4596$$aForschungszentrum Jülich$$b2$$kFZJ
000889017 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000889017 9141_ $$y2020
000889017 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000889017 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-02
000889017 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-02
000889017 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000889017 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000889017 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUSION ENG DES : 2018$$d2020-09-02
000889017 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000889017 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-02
000889017 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-02
000889017 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000889017 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000889017 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-02$$wger
000889017 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000889017 920__ $$lyes
000889017 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000889017 9801_ $$aFullTexts
000889017 980__ $$ajournal
000889017 980__ $$aVDB
000889017 980__ $$aUNRESTRICTED
000889017 980__ $$aI:(DE-Juel1)IEK-4-20101013
000889017 981__ $$aI:(DE-Juel1)IFN-1-20101013