000889039 001__ 889039
000889039 005__ 20240712100824.0
000889039 0247_ $$2doi$$a10.5194/amt-13-7025-2020
000889039 0247_ $$2ISSN$$a1867-1381
000889039 0247_ $$2ISSN$$a1867-8548
000889039 0247_ $$2Handle$$a2128/26645
000889039 0247_ $$2altmetric$$aaltmetric:96430391
000889039 0247_ $$2WOS$$aWOS:000602537700005
000889039 037__ $$aFZJ-2020-05409
000889039 082__ $$a550
000889039 1001_ $$0P:(DE-Juel1)129105$$aUngermann, Jörn$$b0$$eCorresponding author$$ufzj
000889039 245__ $$aCirrus cloud shape detection by tomographic extinction retrievals from infrared limb emission sounder measurements
000889039 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2020
000889039 3367_ $$2DRIVER$$aarticle
000889039 3367_ $$2DataCite$$aOutput Types/Journal article
000889039 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617694340_24456
000889039 3367_ $$2BibTeX$$aARTICLE
000889039 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889039 3367_ $$00$$2EndNote$$aJournal Article
000889039 520__ $$aWe investigate the impact of model trace gas transport schemes on the representation of transport processes in the upper troposphere and lower stratosphere. Towards this end, the Chemical Lagrangian Model of the Stratosphere (CLaMS) was coupled to the ECHAM/MESSy Atmospheric Chemistry (EMAC) model and results from the two transport schemes (Lagrangian critical Lyapunov scheme and flux-form semi-Lagrangian, respectively) were compared. Advection in CLaMS was driven by the EMAC simulation winds, and thereby the only differences in transport between the two sets of results were caused by differences in the transport schemes. To analyze the timescales of large-scale transport, multiple tropical-surface-emitted tracer pulses were performed to calculate age of air spectra, while smaller-scale transport was analyzed via idealized, radioactively decaying tracers emitted in smaller regions (nine grid cells) within the stratosphere. The results show that stratospheric transport barriers are significantly stronger for Lagrangian EMAC-CLaMS transport due to reduced numerical diffusion. In particular, stronger tracer gradients emerge around the polar vortex, at the subtropical jets, and at the edge of the tropical pipe. Inside the polar vortex, the more diffusive EMAC flux-form semi-Lagrangian transport scheme results in a substantially higher amount of air with ages from 0 to 2 years (up to a factor of 5 higher). In the lowermost stratosphere, mean age of air is much smaller in EMAC, owing to stronger diffusive cross-tropopause transport. Conversely, EMAC-CLaMS shows a summertime lowermost stratosphere age inversion – a layer of older air residing below younger air (an “eave”). This pattern is caused by strong poleward transport above the subtropical jet and is entirely blurred by diffusive cross-tropopause transport in EMAC. Potential consequences from the choice of the transport scheme on chemistry–climate and geoengineering simulations are discussed.
000889039 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000889039 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000889039 536__ $$0G:(DE-Juel1)jiek72_20200501$$aTomographic retrievals of temperature and trace gasses from GLORIA measurements (jiek72_20200501)$$cjiek72_20200501$$fTomographic retrievals of temperature and trace gasses from GLORIA measurements$$x2
000889039 588__ $$aDataset connected to CrossRef
000889039 7001_ $$0P:(DE-Juel1)172794$$aBartolome, Irene$$b1
000889039 7001_ $$0P:(DE-Juel1)129121$$aGriessbach, Sabine$$b2
000889039 7001_ $$0P:(DE-Juel1)129154$$aSpang, Reinhold$$b3
000889039 7001_ $$0P:(DE-Juel1)139013$$aRolf, Christian$$b4
000889039 7001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b5
000889039 7001_ $$00000-0002-4174-9531$$aHöpfner, Michael$$b6
000889039 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b7
000889039 773__ $$0PERI:(DE-600)2505596-3$$a10.5194/amt-13-7025-2020$$gVol. 13, no. 12, p. 7025 - 7045$$n12$$p7025 - 7045$$tAtmospheric measurement techniques$$v13$$x1867-8548$$y2020
000889039 8564_ $$uhttps://juser.fz-juelich.de/record/889039/files/invoice_Helmholtz-PUC-2020-122.pdf
000889039 8564_ $$uhttps://juser.fz-juelich.de/record/889039/files/amt-13-7025-2020.pdf$$yOpenAccess
000889039 8767_ $$8Helmholtz-PUC-2020-122$$92020-12-23$$d2020-01-05$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200161460
000889039 909CO $$ooai:juser.fz-juelich.de:889039$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000889039 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129105$$aForschungszentrum Jülich$$b0$$kFZJ
000889039 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172794$$aForschungszentrum Jülich$$b1$$kFZJ
000889039 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129121$$aForschungszentrum Jülich$$b2$$kFZJ
000889039 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129154$$aForschungszentrum Jülich$$b3$$kFZJ
000889039 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139013$$aForschungszentrum Jülich$$b4$$kFZJ
000889039 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich$$b5$$kFZJ
000889039 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b7$$kFZJ
000889039 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000889039 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000889039 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000889039 9141_ $$y2020
000889039 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-27
000889039 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-27
000889039 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889039 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-27
000889039 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS MEAS TECH : 2018$$d2020-08-27
000889039 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-27
000889039 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-27
000889039 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-27
000889039 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-27
000889039 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-27
000889039 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-27
000889039 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889039 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-27
000889039 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-27
000889039 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-27
000889039 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-27
000889039 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-27
000889039 920__ $$lyes
000889039 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000889039 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000889039 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000889039 9801_ $$aAPC
000889039 9801_ $$aFullTexts
000889039 980__ $$ajournal
000889039 980__ $$aVDB
000889039 980__ $$aI:(DE-Juel1)IEK-7-20101013
000889039 980__ $$aI:(DE-Juel1)JSC-20090406
000889039 980__ $$aI:(DE-82)080012_20140620
000889039 980__ $$aAPC
000889039 980__ $$aUNRESTRICTED
000889039 981__ $$aI:(DE-Juel1)ICE-4-20101013