000889041 001__ 889041
000889041 005__ 20240712100950.0
000889041 0247_ $$2doi$$a10.5194/acp-20-13701-2020
000889041 0247_ $$2ISSN$$a1680-7316
000889041 0247_ $$2ISSN$$a1680-7324
000889041 0247_ $$2Handle$$a2128/27336
000889041 0247_ $$2altmetric$$aaltmetric:94272794
000889041 0247_ $$2WOS$$aWOS:000589618500002
000889041 037__ $$aFZJ-2020-05411
000889041 082__ $$a550
000889041 1001_ $$0P:(DE-Juel1)166277$$aRolletter, Michael$$b0$$ufzj
000889041 245__ $$aPhotooxidation of pinonaldehyde at ambient conditions investigated in the atmospheric simulation chamber SAPHIR
000889041 260__ $$aKatlenburg-Lindau$$bEGU$$c2020
000889041 3367_ $$2DRIVER$$aarticle
000889041 3367_ $$2DataCite$$aOutput Types/Journal article
000889041 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1620120393_1301
000889041 3367_ $$2BibTeX$$aARTICLE
000889041 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889041 3367_ $$00$$2EndNote$$aJournal Article
000889041 520__ $$aThe photooxidation of pinonaldehyde, one product of the α-pinene degradation, was investigated in the atmospheric simulation chamber SAPHIR under natural sunlight at low NO concentrations (<0.2 ppbv) with and without an added hydroxyl radical (OH) scavenger. With a scavenger, pinonaldehyde was exclusively removed by photolysis, whereas without a scavenger, the degradation was dominated by reaction with OH. In both cases, the observed rate of pinonaldehyde consumption was faster than predicted by an explicit chemical model, the Master Chemical Mechanism (MCM, version 3.3.1). In the case with an OH scavenger, the observed photolytic decay can be reproduced by the model if an experimentally determined photolysis frequency is used instead of the parameterization in the MCM. A good fit is obtained when the photolysis frequency is calculated from the measured solar actinic flux spectrum, absorption cross sections published by Hallquist et al. (1997), and an effective quantum yield of 0.9. The resulting photolysis frequency is 3.5 times faster than the parameterization in the MCM. When pinonaldehyde is mainly removed by reaction with OH, the observed OH and hydroperoxy radical (HO$_2$) concentrations are underestimated in the model by a factor of 2. Using measured HO2 as a model constraint brings modeled and measured OH concentrations into agreement. This suggests that the chemical mechanism includes all relevant OH-producing reactions but is missing a source for HO$_2$. The missing HO$_2$ source strength of (0.8 to 1.5) ppbv h$^{−1}$ is similar to the rate of the pinonaldehyde consumption of up to 2.5 ppbv h$^{−1}$. When the model is constrained by HO$_2$ concentrations and the experimentally derived photolysis frequency, the pinonaldehyde decay is well represented. The photolysis of pinonaldehyde yields 0.18 ± 0.20 formaldehyde molecules at NO concentrations of less than 200 pptv, but no significant acetone formation is observed. When pinonaldehyde is also oxidized by OH under low NO conditions (maximum 80 pptv), yields of acetone and formaldehyde increase over the course of the experiment from 0.2 to 0.3 and from 0.15 to 0.45, respectively. Fantechi et al. (2002) proposed a degradation mechanism based on quantum-chemical calculations, which is considerably more complex than the MCM scheme and contains additional reaction pathways and products. Implementing these modifications results in a closure of the model–measurement discrepancy for the products acetone and formaldehyde, when pinonaldehyde is degraded only by photolysis. In contrast, the underprediction of formed acetone and formaldehyde is worsened compared to model results by the MCM, when pinonaldehyde is mainly degraded in the reaction with OH. This shows that the current mechanisms lack acetone and formaldehyde sources for low NO conditions like in these experiments. Implementing the modifications suggested by Fantechi et al. (2002) does not improve the model–measurement agreement of OH and HO$_2$.
000889041 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000889041 588__ $$aDataset connected to CrossRef
000889041 7001_ $$0P:(DE-Juel1)170025$$aBlocquet, Marion$$b1
000889041 7001_ $$0P:(DE-Juel1)3039$$aKaminski, Martin$$b2
000889041 7001_ $$0P:(DE-Juel1)2693$$aBohn, Birger$$b3
000889041 7001_ $$0P:(DE-Juel1)16317$$aDorn, Hans-Peter$$b4
000889041 7001_ $$0P:(DE-Juel1)16326$$aHofzumahaus, Andreas$$b5
000889041 7001_ $$0P:(DE-Juel1)16342$$aHolland, Frank$$b6$$ufzj
000889041 7001_ $$0P:(DE-Juel1)6775$$aLi, Xin$$b7$$ufzj
000889041 7001_ $$0P:(DE-Juel1)16347$$aRohrer, Franz$$b8$$ufzj
000889041 7001_ $$0P:(DE-Juel1)5344$$aTillmann, Ralf$$b9$$ufzj
000889041 7001_ $$0P:(DE-Juel1)2367$$aWegener, Robert$$b10
000889041 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b11
000889041 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b12
000889041 7001_ $$0P:(DE-Juel1)7363$$aFuchs, Hendrik$$b13$$eCorresponding author
000889041 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-20-13701-2020$$gVol. 20, no. 22, p. 13701 - 13719$$n22$$p13701 - 13719$$tAtmospheric chemistry and physics$$v20$$x1680-7324$$y2020
000889041 8564_ $$uhttps://juser.fz-juelich.de/record/889041/files/invoice_Helmholtz-PUC-2020-122.pdf
000889041 8564_ $$uhttps://juser.fz-juelich.de/record/889041/files/acp-20-13701-2020.pdf$$yOpenAccess
000889041 8767_ $$8Helmholtz-PUC-2020-122$$92020-12-23$$d2021-01-05$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200161460
000889041 909CO $$ooai:juser.fz-juelich.de:889041$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000889041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166277$$aForschungszentrum Jülich$$b0$$kFZJ
000889041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2693$$aForschungszentrum Jülich$$b3$$kFZJ
000889041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16317$$aForschungszentrum Jülich$$b4$$kFZJ
000889041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16326$$aForschungszentrum Jülich$$b5$$kFZJ
000889041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16342$$aForschungszentrum Jülich$$b6$$kFZJ
000889041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6775$$aForschungszentrum Jülich$$b7$$kFZJ
000889041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16347$$aForschungszentrum Jülich$$b8$$kFZJ
000889041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5344$$aForschungszentrum Jülich$$b9$$kFZJ
000889041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2367$$aForschungszentrum Jülich$$b10$$kFZJ
000889041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b11$$kFZJ
000889041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b12$$kFZJ
000889041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7363$$aForschungszentrum Jülich$$b13$$kFZJ
000889041 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000889041 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000889041 9141_ $$y2020
000889041 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000889041 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000889041 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889041 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2018$$d2020-09-03
000889041 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2018$$d2020-09-03
000889041 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-03
000889041 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-03
000889041 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000889041 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-03
000889041 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000889041 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889041 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-09-03
000889041 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-03
000889041 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-03
000889041 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000889041 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000889041 920__ $$lyes
000889041 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000889041 9801_ $$aAPC
000889041 9801_ $$aFullTexts
000889041 980__ $$ajournal
000889041 980__ $$aVDB
000889041 980__ $$aI:(DE-Juel1)IEK-8-20101013
000889041 980__ $$aAPC
000889041 980__ $$aUNRESTRICTED
000889041 981__ $$aI:(DE-Juel1)ICE-3-20101013