000889043 001__ 889043
000889043 005__ 20240712113232.0
000889043 0247_ $$2doi$$a10.1149/1945-7111/abb70c
000889043 0247_ $$2ISSN$$a0013-4651
000889043 0247_ $$2ISSN$$a0096-4743
000889043 0247_ $$2ISSN$$a0096-4786
000889043 0247_ $$2ISSN$$a1945-6859
000889043 0247_ $$2ISSN$$a1945-7111
000889043 0247_ $$2ISSN$$a2002-2015
000889043 0247_ $$2ISSN$$a2156-7395
000889043 0247_ $$2Handle$$a2128/26826
000889043 0247_ $$2altmetric$$aaltmetric:90967090
000889043 0247_ $$2WOS$$aWOS:000575210800001
000889043 037__ $$aFZJ-2020-05413
000889043 082__ $$a660
000889043 1001_ $$00000-0002-3510-135X$$aAili, David$$b0
000889043 245__ $$aPhosphoric Acid Dynamics in High Temperature Polymer Electrolyte Membranes
000889043 260__ $$aBristol$$bIOP Publishing$$c2020
000889043 3367_ $$2DRIVER$$aarticle
000889043 3367_ $$2DataCite$$aOutput Types/Journal article
000889043 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611070581_14928
000889043 3367_ $$2BibTeX$$aARTICLE
000889043 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889043 3367_ $$00$$2EndNote$$aJournal Article
000889043 520__ $$aPhosphoric acid is amphoteric and has been used to dope basic polymer, e.g. polybenzimidazole, membranes and acidic polymer, e.g. perfluorosulfonic acid, membranes. Both membrane systems exhibit high proton conductivities at temperatures above 100 °C under anhydrous conditions. The former has been developed into a commercial fuel cell technology while the latter can only deliver a few mA cm−2 in fuel cells and hydrogen pumping cells. In this work, it is experimentally verified that the current window of acid doped perfluorosulfonic acid membranes in electrochemical cells under dry conditions is limited by the migration of H4PO4+ species in combination with the slow H3PO4 diffusion. The phosphoric acid dynamics were monitored in a cell equipped with integrated reference electrodes in the electrolyte membrane, which allowed for quantification of the phosphoric acid in different membrane segments. From the time-resolved measurements, the H4PO4+ transference number was found to be as high as 52% under dry conditions. In combination with the slow H3PO4 back-diffusion, which was 5–6 orders of magnitude lower than that of water, the migration of H4PO4+ towards the cathode results in rapid resistance increase at the anode-membrane interface, ultimately leading to the cell failure.
000889043 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000889043 588__ $$aDataset connected to CrossRef
000889043 7001_ $$00000-0001-7058-3342$$aBecker, Hans$$b1
000889043 7001_ $$0P:(DE-Juel1)6697$$aReimer, Uwe$$b2
000889043 7001_ $$00000-0002-3145-0229$$aAndreasen, Jens Wenzel$$b3
000889043 7001_ $$0P:(DE-HGF)0$$aCleemann, Lars N.$$b4
000889043 7001_ $$00000-0002-2427-7763$$aJensen, Jens Oluf$$b5
000889043 7001_ $$0P:(DE-HGF)0$$aPan, Chao$$b6
000889043 7001_ $$0P:(DE-HGF)0$$aWang, Xingdong$$b7
000889043 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b8
000889043 7001_ $$00000-0002-5460-055X$$aLi, Qingfeng$$b9$$eCorresponding author
000889043 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/1945-7111/abb70c$$gVol. 167, no. 13, p. 134507 -$$n13$$p134507 -$$tJournal of the Electrochemical Society$$v167$$x1945-7111$$y2020
000889043 8564_ $$uhttps://juser.fz-juelich.de/record/889043/files/Aili_2020_J._Electrochem._Soc._167_134507.pdf$$yRestricted
000889043 8564_ $$uhttps://juser.fz-juelich.de/record/889043/files/Phosphoric%20Acid%20Dynamics%20in%20High%20Temperature%20Polymer%20Electrolyte%20Membranes.pdf$$yOpenAccess
000889043 909CO $$ooai:juser.fz-juelich.de:889043$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6697$$aForschungszentrum Jülich$$b2$$kFZJ
000889043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b8$$kFZJ
000889043 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b8$$kRWTH
000889043 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000889043 9141_ $$y2020
000889043 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000889043 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000889043 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-05
000889043 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-05
000889043 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000889043 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000889043 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000889043 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889043 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2018$$d2020-09-05
000889043 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000889043 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000889043 920__ $$lyes
000889043 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000889043 9801_ $$aFullTexts
000889043 980__ $$ajournal
000889043 980__ $$aVDB
000889043 980__ $$aI:(DE-Juel1)IEK-14-20191129
000889043 980__ $$aUNRESTRICTED
000889043 981__ $$aI:(DE-Juel1)IET-4-20191129