001     889043
005     20240712113232.0
024 7 _ |a 10.1149/1945-7111/abb70c
|2 doi
024 7 _ |a 0013-4651
|2 ISSN
024 7 _ |a 0096-4743
|2 ISSN
024 7 _ |a 0096-4786
|2 ISSN
024 7 _ |a 1945-6859
|2 ISSN
024 7 _ |a 1945-7111
|2 ISSN
024 7 _ |a 2002-2015
|2 ISSN
024 7 _ |a 2156-7395
|2 ISSN
024 7 _ |a 2128/26826
|2 Handle
024 7 _ |a altmetric:90967090
|2 altmetric
024 7 _ |a WOS:000575210800001
|2 WOS
037 _ _ |a FZJ-2020-05413
082 _ _ |a 660
100 1 _ |a Aili, David
|0 0000-0002-3510-135X
|b 0
245 _ _ |a Phosphoric Acid Dynamics in High Temperature Polymer Electrolyte Membranes
260 _ _ |a Bristol
|c 2020
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611070581_14928
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Phosphoric acid is amphoteric and has been used to dope basic polymer, e.g. polybenzimidazole, membranes and acidic polymer, e.g. perfluorosulfonic acid, membranes. Both membrane systems exhibit high proton conductivities at temperatures above 100 °C under anhydrous conditions. The former has been developed into a commercial fuel cell technology while the latter can only deliver a few mA cm−2 in fuel cells and hydrogen pumping cells. In this work, it is experimentally verified that the current window of acid doped perfluorosulfonic acid membranes in electrochemical cells under dry conditions is limited by the migration of H4PO4+ species in combination with the slow H3PO4 diffusion. The phosphoric acid dynamics were monitored in a cell equipped with integrated reference electrodes in the electrolyte membrane, which allowed for quantification of the phosphoric acid in different membrane segments. From the time-resolved measurements, the H4PO4+ transference number was found to be as high as 52% under dry conditions. In combination with the slow H3PO4 back-diffusion, which was 5–6 orders of magnitude lower than that of water, the migration of H4PO4+ towards the cathode results in rapid resistance increase at the anode-membrane interface, ultimately leading to the cell failure.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Becker, Hans
|0 0000-0001-7058-3342
|b 1
700 1 _ |a Reimer, Uwe
|0 P:(DE-Juel1)6697
|b 2
700 1 _ |a Andreasen, Jens Wenzel
|0 0000-0002-3145-0229
|b 3
700 1 _ |a Cleemann, Lars N.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jensen, Jens Oluf
|0 0000-0002-2427-7763
|b 5
700 1 _ |a Pan, Chao
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wang, Xingdong
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 8
700 1 _ |a Li, Qingfeng
|0 0000-0002-5460-055X
|b 9
|e Corresponding author
773 _ _ |a 10.1149/1945-7111/abb70c
|g Vol. 167, no. 13, p. 134507 -
|0 PERI:(DE-600)2002179-3
|n 13
|p 134507 -
|t Journal of the Electrochemical Society
|v 167
|y 2020
|x 1945-7111
856 4 _ |u https://juser.fz-juelich.de/record/889043/files/Aili_2020_J._Electrochem._Soc._167_134507.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/889043/files/Phosphoric%20Acid%20Dynamics%20in%20High%20Temperature%20Polymer%20Electrolyte%20Membranes.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889043
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)6697
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129883
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-Juel1)129883
913 1 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Fuel Cells
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTROCHEM SOC : 2018
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21