000889050 001__ 889050
000889050 005__ 20240712100825.0
000889050 0247_ $$2doi$$a10.1029/2020GL088621
000889050 0247_ $$2ISSN$$a0094-8276
000889050 0247_ $$2ISSN$$a1944-8007
000889050 0247_ $$2Handle$$a2128/27126
000889050 0247_ $$2altmetric$$aaltmetric:96541599
000889050 0247_ $$2WOS$$aWOS:000613648800041
000889050 037__ $$aFZJ-2020-05418
000889050 041__ $$aEnglish
000889050 082__ $$a550
000889050 1001_ $$00000-0002-9147-7079$$aPerrett, Jon A.$$b0$$eCorresponding author
000889050 245__ $$aDetermining Gravity Wave Sources and Propagation in the Southern Hemisphere by Ray‐Tracing AIRS Measurements
000889050 260__ $$aHoboken, NJ$$bWiley$$c2021
000889050 3367_ $$2DRIVER$$aarticle
000889050 3367_ $$2DataCite$$aOutput Types/Journal article
000889050 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641839967_21106
000889050 3367_ $$2BibTeX$$aARTICLE
000889050 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889050 3367_ $$00$$2EndNote$$aJournal Article
000889050 520__ $$aGravity waves (GWs) are key drivers of atmospheric circulation. Understanding their sources and propagation is essential to improving weather and climate models. We apply a 3D Stockwell Transform to one month of stratospheric temperature data from NASA's Atmospheric InfraRed Sounder to obtain 3D GW measurements and parameters. We use ray‐tracing methods to determine the sources and propagation characteristics of these GWs over the entire Southern Ocean. We trace 1.28 million GW measurements per day for the month of June 2010. Our analysis suggests that ground‐based sources around the Andes, Antarctic Peninsula and Kerguelen play major roles, and that the GWs generated by these and other sources travel large zonal distances. We show evidence that GWs propagate into the 60°S belt, a possible source of ‘missing momentum flux’ in GCMs at this latitude. These results emphasise the need for models to incorporate the possibility that GWs can exhibit large horizontal propagation.
000889050 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000889050 588__ $$aDataset connected to CrossRef
000889050 7001_ $$00000-0003-2496-953X$$aWright, Corwin J.$$b1
000889050 7001_ $$00000-0003-4377-2038$$aHindley, Neil P.$$b2
000889050 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b3
000889050 7001_ $$00000-0003-1149-8484$$aMitchell, Nicholas J.$$b4
000889050 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b5
000889050 7001_ $$0P:(DE-Juel1)169715$$aStrube, Cornelia$$b6
000889050 7001_ $$00000-0002-8534-1909$$aEckermann, Stephen D.$$b7
000889050 773__ $$0PERI:(DE-600)2021599-X$$a10.1029/2020GL088621$$n2$$pe2020GL088621$$tGeophysical research letters$$v48$$x1944-8007$$y2021
000889050 8564_ $$uhttps://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL088621
000889050 8564_ $$uhttps://juser.fz-juelich.de/record/889050/files/2020GL088621.pdf$$yOpenAccess
000889050 8564_ $$uhttps://juser.fz-juelich.de/record/889050/files/2nd_Corrections___Perrett_et_al_GRL.pdf$$yOpenAccess
000889050 909CO $$ooai:juser.fz-juelich.de:889050$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000889050 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b3$$kFZJ
000889050 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b5$$kFZJ
000889050 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169715$$aForschungszentrum Jülich$$b6$$kFZJ
000889050 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000889050 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000889050 9130_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x1
000889050 9141_ $$y2021
000889050 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-04
000889050 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000889050 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889050 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-04
000889050 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-04
000889050 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-04$$wger
000889050 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000889050 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-04
000889050 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889050 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-04
000889050 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOPHYS RES LETT : 2018$$d2020-09-04
000889050 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000889050 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-04
000889050 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-04
000889050 920__ $$lyes
000889050 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000889050 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x1
000889050 9801_ $$aFullTexts
000889050 980__ $$ajournal
000889050 980__ $$aVDB
000889050 980__ $$aI:(DE-Juel1)JSC-20090406
000889050 980__ $$aI:(DE-Juel1)IEK-7-20101013
000889050 980__ $$aUNRESTRICTED
000889050 981__ $$aI:(DE-Juel1)ICE-4-20101013