000889051 001__ 889051
000889051 005__ 20211025141311.0
000889051 0247_ $$2doi$$a10.1016/j.envpol.2020.116365
000889051 0247_ $$2ISSN$$a0013-9327
000889051 0247_ $$2ISSN$$a0269-7491
000889051 0247_ $$2ISSN$$a1873-6424
000889051 0247_ $$2ISSN$$a1878-2450
000889051 0247_ $$2Handle$$a2128/26780
000889051 0247_ $$2altmetric$$aaltmetric:96993076
000889051 0247_ $$2pmid$$a33388681
000889051 0247_ $$2WOS$$aWOS:000614114100072
000889051 037__ $$aFZJ-2020-05419
000889051 082__ $$a690
000889051 1001_ $$00000-0002-8005-2569$$aWu, Di$$b0
000889051 245__ $$aThe importance of ammonia volatilisation in estimating the efficacy of nitrification inhibitors to reduce N2O emissions: a global meta-analysis
000889051 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000889051 3367_ $$2DRIVER$$aarticle
000889051 3367_ $$2DataCite$$aOutput Types/Journal article
000889051 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1635151294_28702
000889051 3367_ $$2BibTeX$$aARTICLE
000889051 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889051 3367_ $$00$$2EndNote$$aJournal Article
000889051 520__ $$aNitrification inhibitors (NIs) have been shown to be an effective tool to mitigate direct N2O emissions from soils. However, emerging findings suggest that NIs may increase soil ammonia (NH3) volatilization and, subsequently, indirect N2O emission. A quantitative synthesis is lacking to evaluate how NIs may affect NH3 volatilization and the overall N2O emissions under different environmental conditions. In this meta-analysis, we quantified the responses of NH3 volatilization to NI application with 234 observations from 89 individual studies and analysed the role of experimental method, soil properties, fertilizer/NI type, fertilizer application rate and land use type as explanatory factors. Furthermore, using data sets where soil NH3 emission and N2O emission were measured simultaneously, we re-evaluated the effect of NI on overall N2O emissions including indirect N2O emission from NH3 volatilization. We found that, on average, NIs increased NH3 volatilization by 35.7% (95% CI: 25.7–46.7%) and increased indirect N2O emission from NH3 emission (and subsequent N deposition) by 2.9%–15.2%. Responses of NH3 volatilization mainly varied with experimental method, soil pH, NI type and fertilizer type. The increase of NH3 volatilization following NI application showed a positive correlation with soil pH (R2 = 0.04, n = 234, P < 0.05) and N fertilizer rate (R2 = 0.04, n = 187, P < 0.05). When the indirect N2O emission was considered, NI’s N2O mitigation effect decreased from 48.0% to 39.7% (EF = 1%), or 28.2% (EF = 5%). The results indicate that using DMPP with ammonium-based fertilizer in low pH, high SOC soils would have a lower risk for increasing NH3 volatilization than using DCD and nitrapyrin with urea in high pH, lower SOC soil. Furthermore, reducing N application rate may help to improve NIs’ overall N2O emission mitigation efficiency and minimize their impact on NH3 volatilization.
000889051 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000889051 588__ $$aDataset connected to CrossRef
000889051 7001_ $$0P:(DE-HGF)0$$aZhang, Yuxue$$b1
000889051 7001_ $$0P:(DE-HGF)0$$aDong, Gao$$b2
000889051 7001_ $$0P:(DE-HGF)0$$aDu, Zhangliu$$b3
000889051 7001_ $$0P:(DE-HGF)0$$aWu, Wenliang$$b4$$eCorresponding author
000889051 7001_ $$0P:(DE-HGF)0$$aChadwick, David$$b5
000889051 7001_ $$0P:(DE-Juel1)145865$$aBol, Roland$$b6
000889051 773__ $$0PERI:(DE-600)2013037-5$$a10.1016/j.envpol.2020.116365$$gp. 116365 -$$p116365$$tEnvironmental pollution$$v271$$x0269-7491$$y2021
000889051 8564_ $$uhttps://juser.fz-juelich.de/record/889051/files/1-s2.0-S0269749120370548-main.pdf$$yPublished on 2020-12-21. Available in OpenAccess from 2021-12-21.
000889051 909CO $$ooai:juser.fz-juelich.de:889051$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000889051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich$$b6$$kFZJ
000889051 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000889051 9141_ $$y2021
000889051 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-31
000889051 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-31
000889051 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-31
000889051 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-31
000889051 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-08-31
000889051 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000889051 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENVIRON POLLUT : 2018$$d2020-08-31
000889051 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000889051 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENVIRON POLLUT : 2018$$d2020-08-31
000889051 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-31
000889051 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-31
000889051 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-08-31
000889051 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-31
000889051 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-31$$wger
000889051 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-31
000889051 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000889051 980__ $$ajournal
000889051 980__ $$aVDB
000889051 980__ $$aI:(DE-Juel1)IBG-3-20101118
000889051 980__ $$aUNRESTRICTED
000889051 9801_ $$aFullTexts