000889057 001__ 889057
000889057 005__ 20220930130301.0
000889057 0247_ $$2doi$$a10.1016/j.csbj.2020.12.034
000889057 0247_ $$2Handle$$a2128/26996
000889057 0247_ $$2pmid$$a33552446
000889057 0247_ $$2WOS$$aWOS:000684850500008
000889057 0247_ $$2altmetric$$aaltmetric:99735302
000889057 037__ $$aFZJ-2021-00001
000889057 082__ $$a570
000889057 1001_ $$00000-0001-8134-1445$$aContreras, Francisca$$b0
000889057 245__ $$aCan Constraint Network Analysis guide the identification phase of KnowVolution? A case study on improved thermostability of an endo-β-glucanase
000889057 260__ $$aGotenburg$$bResearch Network of Computational and Structural Biotechnology (RNCSB)$$c2021
000889057 3367_ $$2DRIVER$$aarticle
000889057 3367_ $$2DataCite$$aOutput Types/Journal article
000889057 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1634739400_19754
000889057 3367_ $$2BibTeX$$aARTICLE
000889057 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889057 3367_ $$00$$2EndNote$$aJournal Article
000889057 520__ $$aCellulases are industrially important enzymes, e.g., in the production of bioethanol, in pulp and paper industry, feedstock, and textile. Thermostability is often a prerequisite for high process stability and improving thermostability without affecting specific activities at lower temperatures is challenging and often time-consuming. Protein engineering strategies that combine experimental and computational are emerging in order to reduce experimental screening efforts and speed up enzyme engineering campaigns. Constraint Network Analysis (CNA) is a promising computational method that identifies beneficial positions in enzymes to improve thermostability. In this study, we compare CNA and directed evolution in the identification of beneficial positions in order to evaluate the potential of CNA in protein engineering campaigns (e.g., in the identification phase of KnowVolution). We engineered the industrially relevant endoglucanase EGLII from Penicillium verruculosum towards increased thermostability. From the CNA approach, six variants were obtained with an up to 2-fold improvement in thermostability. The overall experimental burden was reduced to 40% utilizing the CNA method in comparison to directed evolution. On a variant level, the success rate was similar for both strategies, with 0.27% and 0.18% improved variants in the epPCR and CNA-guided library, respectively. In essence, CNA is an effective method for identification of positions that improve thermostability.
000889057 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000889057 536__ $$0G:(DE-Juel1)hkf7_20200501$$aForschergruppe Gohlke (hkf7_20200501)$$chkf7_20200501$$fForschergruppe Gohlke$$x1
000889057 588__ $$aDataset connected to CrossRef
000889057 7001_ $$0P:(DE-Juel1)176299$$aNutschel, Christina$$b1$$ufzj
000889057 7001_ $$00000-0002-5815-5422$$aBeust, Laura$$b2
000889057 7001_ $$00000-0003-0089-7156$$aDavari, Mehdi D.$$b3
000889057 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b4$$eCorresponding author
000889057 7001_ $$0P:(DE-HGF)0$$aSchwaneberg, Ulrich$$b5$$eCorresponding author
000889057 773__ $$0PERI:(DE-600)2694435-2$$a10.1016/j.csbj.2020.12.034$$gp. S2001037020305596$$p743-751$$tComputational and structural biotechnology journal$$v19$$x2001-0370$$y2021
000889057 8564_ $$uhttps://juser.fz-juelich.de/record/889057/files/Invoice_OAD0000094123.pdf
000889057 8564_ $$uhttps://juser.fz-juelich.de/record/889057/files/1-s2.0-S2001037020305596-main.pdf$$yOpenAccess
000889057 8564_ $$uhttps://juser.fz-juelich.de/record/889057/files/20201222_CNA_EGLII_Supp_information.pdf$$yRestricted
000889057 8564_ $$uhttps://juser.fz-juelich.de/record/889057/files/20201222_CNA_EGLII_manuscript.pdf$$yOpenAccess
000889057 8767_ $$8OAD0000094123$$92021-01-13$$d2021-01-19$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200162100
000889057 909CO $$ooai:juser.fz-juelich.de:889057$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000889057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176299$$aForschungszentrum Jülich$$b1$$kFZJ
000889057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b4$$kFZJ
000889057 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000889057 9141_ $$y2021
000889057 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000889057 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000889057 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000889057 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT STRUCT BIOTEC : 2018$$d2020-09-03
000889057 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-03
000889057 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-03
000889057 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000889057 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-03
000889057 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000889057 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-03
000889057 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889057 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-03
000889057 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-03
000889057 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000889057 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-03
000889057 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000889057 920__ $$lyes
000889057 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000889057 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x1
000889057 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x2
000889057 980__ $$ajournal
000889057 980__ $$aVDB
000889057 980__ $$aI:(DE-Juel1)JSC-20090406
000889057 980__ $$aI:(DE-Juel1)IBI-7-20200312
000889057 980__ $$aI:(DE-Juel1)NIC-20090406
000889057 980__ $$aAPC
000889057 980__ $$aUNRESTRICTED
000889057 9801_ $$aAPC
000889057 9801_ $$aFullTexts