001     889057
005     20220930130301.0
024 7 _ |a 10.1016/j.csbj.2020.12.034
|2 doi
024 7 _ |a 2128/26996
|2 Handle
024 7 _ |a 33552446
|2 pmid
024 7 _ |a WOS:000684850500008
|2 WOS
024 7 _ |a altmetric:99735302
|2 altmetric
037 _ _ |a FZJ-2021-00001
082 _ _ |a 570
100 1 _ |a Contreras, Francisca
|0 0000-0001-8134-1445
|b 0
245 _ _ |a Can Constraint Network Analysis guide the identification phase of KnowVolution? A case study on improved thermostability of an endo-β-glucanase
260 _ _ |a Gotenburg
|c 2021
|b Research Network of Computational and Structural Biotechnology (RNCSB)
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1634739400_19754
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cellulases are industrially important enzymes, e.g., in the production of bioethanol, in pulp and paper industry, feedstock, and textile. Thermostability is often a prerequisite for high process stability and improving thermostability without affecting specific activities at lower temperatures is challenging and often time-consuming. Protein engineering strategies that combine experimental and computational are emerging in order to reduce experimental screening efforts and speed up enzyme engineering campaigns. Constraint Network Analysis (CNA) is a promising computational method that identifies beneficial positions in enzymes to improve thermostability. In this study, we compare CNA and directed evolution in the identification of beneficial positions in order to evaluate the potential of CNA in protein engineering campaigns (e.g., in the identification phase of KnowVolution). We engineered the industrially relevant endoglucanase EGLII from Penicillium verruculosum towards increased thermostability. From the CNA approach, six variants were obtained with an up to 2-fold improvement in thermostability. The overall experimental burden was reduced to 40% utilizing the CNA method in comparison to directed evolution. On a variant level, the success rate was similar for both strategies, with 0.27% and 0.18% improved variants in the epPCR and CNA-guided library, respectively. In essence, CNA is an effective method for identification of positions that improve thermostability.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Forschergruppe Gohlke (hkf7_20200501)
|0 G:(DE-Juel1)hkf7_20200501
|c hkf7_20200501
|f Forschergruppe Gohlke
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Nutschel, Christina
|0 P:(DE-Juel1)176299
|b 1
|u fzj
700 1 _ |a Beust, Laura
|0 0000-0002-5815-5422
|b 2
700 1 _ |a Davari, Mehdi D.
|0 0000-0003-0089-7156
|b 3
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 4
|e Corresponding author
700 1 _ |a Schwaneberg, Ulrich
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.csbj.2020.12.034
|g p. S2001037020305596
|0 PERI:(DE-600)2694435-2
|p 743-751
|t Computational and structural biotechnology journal
|v 19
|y 2021
|x 2001-0370
856 4 _ |u https://juser.fz-juelich.de/record/889057/files/Invoice_OAD0000094123.pdf
856 4 _ |u https://juser.fz-juelich.de/record/889057/files/1-s2.0-S2001037020305596-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/889057/files/20201222_CNA_EGLII_Supp_information.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/889057/files/20201222_CNA_EGLII_manuscript.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889057
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176299
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172663
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-03
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT STRUCT BIOTEC : 2018
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-09-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 1
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21