000889058 001__ 889058
000889058 005__ 20240625095119.0
000889058 0247_ $$2doi$$a10.1523/ENEURO.0294-20.2020
000889058 0247_ $$2Handle$$a2128/27013
000889058 0247_ $$2altmetric$$aaltmetric:95737948
000889058 0247_ $$2pmid$$a33298457
000889058 0247_ $$2WOS$$aWOS:000641967200007
000889058 037__ $$aFZJ-2021-00002
000889058 082__ $$a610
000889058 1001_ $$0P:(DE-HGF)0$$aMaleeva, Galyna$$b0$$eCorresponding author
000889058 245__ $$aSubunit-specific photocontrol of glycine receptors by azobenzene-nitrazepam photoswitcher
000889058 260__ $$aWashington, DC$$bSociety for Neuroscience$$c2021
000889058 3367_ $$2DRIVER$$aarticle
000889058 3367_ $$2DataCite$$aOutput Types/Journal article
000889058 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638253907_14776
000889058 3367_ $$2BibTeX$$aARTICLE
000889058 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889058 3367_ $$00$$2EndNote$$aJournal Article
000889058 520__ $$aPhotopharmacology is a unique approach that through a combination of photochemistry methods and advanced life science techniques allows the study and control of specific biological processes, ranging from intracellular pathways to brain circuits. Recently, a first photochromic channel blocker of anion-selective GABAA receptors, Azo-NZ1, has been described. In the present study using patch-clamp technique in heterologous system and in mice brain slices, site-directed mutagenesis and molecular modelling we provide evidence of the interaction of Azo-NZ1 with glycine receptors (GlyRs) and determine the molecular basis of this interaction. Glycinergic synaptic neurotransmission determines an important inhibitory drive in the vertebrate nervous system and plays a crucial role in the control of neuronal circuits in the spinal cord and brain stem. GlyRs are involved in locomotion, pain sensation, breathing and auditory function, as well as in the development of such disorders as hyperekplexia, epilepsy and autism. Here we demonstrate that Azo-NZ1 blocks in a UV dependent manner the activity of alpha2 GlyRs (GlyR2), while being barely active on alpha1 GlyRs (GlyR1). The site of Azo-NZ1 action is in the chloride-selective pore of GlyR at the 2’ position of transmembrane helix 2 and amino acids forming this site determine the difference in Azo-NZ1 blocking activity between GlyR2 and GlyR1. This subunit specific modulation is also shown on motoneurons of brainstem slices from neonatal mice that switch during development from expressing "foetal" GlyR2 to "adult" GlyR1 receptors.
000889058 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000889058 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x1
000889058 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x2
000889058 588__ $$aDataset connected to CrossRef
000889058 7001_ $$0P:(DE-HGF)0$$aNin-Hill, Alba$$b1
000889058 7001_ $$0P:(DE-HGF)0$$aRustler, Karin$$b2
000889058 7001_ $$0P:(DE-HGF)0$$aPetukhova, Elena$$b3
000889058 7001_ $$0P:(DE-HGF)0$$aPonomareva, Daria$$b4
000889058 7001_ $$0P:(DE-HGF)0$$aMukhametova, Elvira$$b5
000889058 7001_ $$0P:(DE-HGF)0$$aGomila-Juaneda, Alexandre$$b6
000889058 7001_ $$0P:(DE-HGF)0$$aWutz, Daniel$$b7
000889058 7001_ $$0P:(DE-Juel1)169976$$aAlfonso-Prieto, Mercedes$$b8$$eCorresponding author
000889058 7001_ $$0P:(DE-HGF)0$$aKönig, Burkhard$$b9
000889058 7001_ $$0P:(DE-HGF)0$$aGorostiza, Pau$$b10
000889058 7001_ $$00000-0003-2699-7825$$aBregestovski, Piotr$$b11$$eCorresponding author
000889058 773__ $$0PERI:(DE-600)2800598-3$$a10.1523/ENEURO.0294-20.2020$$gp. ENEURO.0294-20.2020 -$$n1$$pENEURO.0294-20.2020$$teNeuro$$v8$$x2373-2822$$y2021
000889058 8564_ $$uhttps://juser.fz-juelich.de/record/889058/files/ENEURO.0294-20.2020.full-1.pdf$$yOpenAccess
000889058 909CO $$ooai:juser.fz-juelich.de:889058$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889058 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169976$$aForschungszentrum Jülich$$b8$$kFZJ
000889058 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000889058 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
000889058 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x2
000889058 9141_ $$y2021
000889058 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000889058 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000889058 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-05
000889058 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-05
000889058 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889058 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-05
000889058 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-05
000889058 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000889058 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-05
000889058 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000889058 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889058 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Double blind peer review$$d2020-09-05
000889058 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-05
000889058 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-05
000889058 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000889058 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-05
000889058 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000889058 920__ $$lyes
000889058 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000889058 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000889058 980__ $$ajournal
000889058 980__ $$aVDB
000889058 980__ $$aI:(DE-Juel1)IAS-5-20120330
000889058 980__ $$aI:(DE-Juel1)INM-9-20140121
000889058 980__ $$aUNRESTRICTED
000889058 9801_ $$aFullTexts