000889062 001__ 889062
000889062 005__ 20210130011207.0
000889062 0247_ $$2doi$$a10.1021/acs.langmuir.0c01083
000889062 0247_ $$2ISSN$$a0743-7463
000889062 0247_ $$2ISSN$$a1520-5827
000889062 0247_ $$2Handle$$a2128/26649
000889062 0247_ $$2altmetric$$aaltmetric:85221334
000889062 0247_ $$2pmid$$a32575987
000889062 0247_ $$2WOS$$aWOS:000558755200013
000889062 037__ $$aFZJ-2021-00005
000889062 082__ $$a540
000889062 1001_ $$00000-0001-8124-6034$$aRusso Krauss, Irene$$b0$$eCorresponding author
000889062 245__ $$aInteraction with Human Serum Proteins Reveals Biocompatibility of Phosphocholine-Functionalized SPIONs and Formation of Albumin-Decorated Nanoparticles
000889062 260__ $$aWashington, DC$$bACS Publ.$$c2020
000889062 3367_ $$2DRIVER$$aarticle
000889062 3367_ $$2DataCite$$aOutput Types/Journal article
000889062 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1609770402_9104
000889062 3367_ $$2BibTeX$$aARTICLE
000889062 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889062 3367_ $$00$$2EndNote$$aJournal Article
000889062 520__ $$aNanoparticles (NPs) are increasingly exploited as diagnostic and therapeutic devices in medicine. Among them, superparamagnetic nanoparticles (SPIONs) represent very promising tools for magnetic resonance imaging, local heaters for hyperthermia, and nanoplatforms for multimodal imaging and theranostics. However, the use of NPs, including SPIONs, in medicine presents several issues: first, the encounter with the biological world and proteins in particular. Indeed, nanoparticles can suffer from protein adsorption, which can affect NP functionality and biocompatibility. In this respect, we have investigated the interaction of small SPIONs covered by an amphiphilic double layer of oleic acid/oleylamine and 1-octadecanoyl-sn-glycero-3-phosphocholine with two abundant human plasma proteins, human serum albumin (HSA) and human transferrin. By means of spectroscopic and scattering techniques, we analyzed the effect of SPIONs on protein structure and the binding affinities, and only found strong binding in the case of HSA. In no case did SPIONs alter the protein structure significantly. We structurally characterized HSA/SPIONs complexes by means of light and neutron scattering, highlighting the formation of a monolayer of protein molecules on the NP surface. Their interaction with lipid bilayers mimicking biological membranes was investigated by means of neutron reflectivity. We show that HSA/SPIONs do not affect lipid bilayer features and could be further exploited as a nanoplatform for future applications. Overall, our findings point toward a high biocompatibility of phosphocholine-decorated SPIONs and support their use in nanomedicine.
000889062 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x0
000889062 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000889062 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x2
000889062 588__ $$aDataset connected to CrossRef
000889062 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000889062 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
000889062 693__ $$0EXP:(DE-MLZ)MARIA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MARIA-20140101$$6EXP:(DE-MLZ)NL5N-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eMARIA: Magnetic reflectometer with high incident angle$$fNL5N$$x0
000889062 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x1
000889062 7001_ $$0P:(DE-HGF)0$$aPicariello, Alessandra$$b1
000889062 7001_ $$00000-0003-3389-6942$$aVitiello, Giuseppe$$b2
000889062 7001_ $$0P:(DE-HGF)0$$aDe Santis, Augusta$$b3
000889062 7001_ $$0P:(DE-Juel1)158075$$aKoutsioumpas, Alexandros$$b4
000889062 7001_ $$0P:(DE-Juel1)171614$$aHouston, Judith E.$$b5
000889062 7001_ $$0P:(DE-HGF)0$$aFragneto, Giovanna$$b6
000889062 7001_ $$00000-0002-1105-4237$$aPaduano, Luigi$$b7$$eCorresponding author
000889062 773__ $$0PERI:(DE-600)2005937-1$$a10.1021/acs.langmuir.0c01083$$gVol. 36, no. 30, p. 8777 - 8791$$n30$$p8777 - 8791$$tLangmuir$$v36$$x1520-5827$$y2020
000889062 8564_ $$uhttps://juser.fz-juelich.de/record/889062/files/acs.langmuir.0c01083.pdf
000889062 8564_ $$uhttps://juser.fz-juelich.de/record/889062/files/langmuir_revised.pdf$$yPublished on 2020-06-23. Available in OpenAccess from 2021-06-23.
000889062 909CO $$ooai:juser.fz-juelich.de:889062$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000889062 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158075$$aForschungszentrum Jülich$$b4$$kFZJ
000889062 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000889062 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000889062 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x2
000889062 9141_ $$y2020
000889062 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-12
000889062 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-12
000889062 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-12
000889062 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000889062 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLANGMUIR : 2018$$d2020-09-12
000889062 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-12
000889062 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-12
000889062 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-12
000889062 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-12
000889062 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-12
000889062 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-12
000889062 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-12$$wger
000889062 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-12
000889062 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000889062 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000889062 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000889062 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x3
000889062 980__ $$ajournal
000889062 980__ $$aVDB
000889062 980__ $$aUNRESTRICTED
000889062 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000889062 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000889062 980__ $$aI:(DE-588b)4597118-3
000889062 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000889062 9801_ $$aFullTexts