
Eur. Phys. J. Special Topics 229, 2807–2823 (2020)
c© The Author(s) 2020

https://doi.org/10.1140/epjst/e2020-900220-3

THE EUROPEAN

PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

Distortion of surfactant lamellar phases
induced by surface roughness?

Shirin Nouhi1a, Alexandros Koutsioubas2, Vassilios Kapaklis1, and
Adrian R. Rennie1,b

1 Centre for Neutron Scattering, Uppsala University, 516, 75120 Uppsala, Sweden
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Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany

Received 6 October 2019 / Accepted 6 August 2020
Published online 16 November 2020

Abstract. Self-assembly is a characteristic property of soft matter.
Understanding the factors which assist or perturb this process is of
great importance in many biological and industrial processes. Am-
phiphiles self-assemble and order into a variety of structures including
well-ordered lamellar phases. The present work uses neutron reflec-
tometry and neutron scattering to explore the effects of both inter-
face roughness and temperature on the lamellar-phase structure of a
non-ionic surfactant at a solid/liquid interface. The structure of con-
centrated solutions of tetraethyleneglycol dodecyl ether has been com-
pared against a smooth surface and one with a roughness of the order
of the lamellar spacing. This has been done in order to investigate
the role perturbations have on the overall lamellar order, when these
have length scales of the order of the interactions between neighboring
lamellae. The results showed that the surfactant forms a well-ordered
and aligned structure at a smooth surface, extending to a depth of
several micrometers from the interface. Increasing the temperature of
the sample and subsequent cooling promotes alignment and increases
the number of oriented layers at the surface. The same sample forms
a significantly less aligned structure against a rough surface that does
not align to the same extent, even after heating. The perturbation of
the structure caused by thermal fluctuations was found to be much
less than that imposed by a small surface roughness.

1 Introduction

Amphiphiles with hydrophilic head groups and hydrophobic hydrocarbon tail regions
occur widely as detergents, in biological membranes and in formulations for personal
care and pharmaceutical products, coatings, etc. [1–4]. They self-assemble and order
into a variety of structures such as micelles, liquid crystal phases, microemulsions
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and other structures that display both long-range order and interesting dynamics. At
solid/liquid interfaces, amphiphiles can organize themselves into well-ordered bilayer
and even as multilayer structures. The structure and ordering of molecules at an inter-
face are strongly influenced by both the physical and chemical properties [5,6]. Often
simple ideas of the relative volumes of hydrophilic “head” groups and hydrophobic
“tails” are used as guides to how surfactants will pack as planar or curved aggregates
[7,8]. The induced ordering of amphiphiles by surfaces and interfaces has been dis-
cussed previously from both theoretical [9,10] and experimental perspectives [11,12],
and this was found to be a key factor in determining their behavior and use in many
potential applications [13]. For example, ordering in liquid crystal structures plays an
important role in the biological function of cells, and disorder or defects can increase
the risk of for example tissue cancer [14,15].

There is considerable similarity between diblock copolymers and surfactants in
that they both consist of two moieties that may tend to phase separate and can have
quite different interactions with solvent molecules. Nanolithographic methods have
been shown to direct self-assembly of diblock copolymers in terms of orientation and
positional order [16,17]. In particular molecules with ethylene oxide head groups and
alkyl tails that are often written as CnEOm, where n is the number of carbons in the
tail and m is the number of ethylene oxide groups, are like very short copolymers. It
has been shown that the temperature variation has a strong influence on the micelle
formation temperature [18], adsorbed amount and the structure of alkyl ethoxy sur-
factants due to changes in hydration of the ethylene oxide groups. For example, their
adsorption to sapphire surfaces at the critical micelle concentration, was found to
increase significantly above the cloud temperature [19].

The structure formed by amphiphiles can be perturbed by temperature, physical
and chemical properties of surfaces, and the addition of other components such as
solvents. Understanding these different factors that induce or disturb the order of
amphiphiles at interfaces is a major challenge, especially distinguishing between the
effects when several perturbations are combined. Changes due to the addition of a
new component such as spherical particles to the lamellar phase of C12EO5 have
been described by Imai et al. and shown to influence the interlamellar interactions
by imposing geometrical constraints on the packing of a planar structure [20–22].
The addition of colloidal particles suppressed the lamellar fluctuations, even at very
low concentrations below 1 vol.%, and caused the lamellar structures to change to
micelles at higher concentrations above ∼3 vol.%.

Deformation or disorder in bilayers imposed either by internal bilayer interac-
tions or by external factors such as guest components, can vary depending on the
mechanical properties of these membranes. Previous studies have shown that mechan-
ical properties of a membrane can be derived from the variation of scattered signals,
providing insight into smectic penetration lengths [23]. These studies have been inves-
tigating the bulk order of lamellar structures, passing the probing beam through mil-
limeter (s) thick samples. Other studies have been investigating interfacial structure
of amphiphilic molecules on textured surfaces. It has been shown that lipid bilayers
can assemble onto arrays of nanowires, of typically 100 nm diameter and length of a
few µm following the topology of the nanowires over millimeter-sized areas [24]. Sur-
factant adsorption on surfaces with different roughness has been shown to occur with
different kinetics and to equilibrate at different final amounts [25]. They found that
the initial rate of adsorption for hexadecyl trimethyl ammonium bromide (CTAB),
both below and above its critical micelle concentration, was higher on a rough sur-
face, although the adsorption completed faster on the smooth surfaces. The structure
of adsorbed CTAB was observed to be different on rough and smooth surfaces [26]
with thicker and asymmetric bilayers that have a lower packing density and surface
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coverage formed on a rough surface. This raises the question: at which values of the
surface roughness the corresponding perturbations become significant?

In the case of surfactant multilayers, a balance between the interactions in the
bulk, those arising from stacking layers and with the solid surface determines the
structure of lamellae. In the present study, we explore the influence of surface rough-
ness on multilayer structures to gain understanding of the extent that small geomet-
ric perturbations, with length scales approximately the same as the lamellar spacing,
influence the long-range ordering of surfactants. For this purpose, we have chosen
a non-ionic surfactant, with known properties as a model system in a concentra-
tion range where ordered multilayer structures can form. The structure of the same
surfactant dispersion is studied against a smooth and a rough surface at different
temperatures, so that the effect of surface roughness can be distinguished from the
perturbation due to thermal fluctuations.

2 Neutron reflection and neutron scattering

Neutron reflectometry is a surface sensitive technique for probing materials assembled
at interfaces, and to the order of hundreds of micrometers into the bulk of the sample.
In a typical neutron reflectometry experiment the intensity of the reflected beam is
measured as a function of momentum transfer, Q, in the direction perpendicular
to the interface (z). The correlation length of the structure must be smaller than
the coherent length of the beam in that direction to be probed using this technique.
Normally this coherent length is about half a micron in the z direction. In the present
study three types of analysis have been performed to understand the ordering and
alignment of the bilayer stacks. First, measuring and modeling the reflectivity, which
is the ratio of the intensity of at the specular angle to that of the incoming beam.
Under this condition, the average composition profile perpendicular to the surface
is described as a model of different layers parallel to the interface. The scattered
signal that occurs at other angles, provides structural information in other directions
such as lateral inhomogeneity parallel to the surface and about lamellae that are
not aligned with the surface. Secondly, by using a two-dimensional detector, it is
possible to measure specular reflection and other scattering simultaneously. In a
reflectometry experiment the resolution in the in-plane direction is low, hence only
larger correlation length, typically several micrometers, can be probed. In this study,
we used such data to analyze the full-width half maximum of the Bragg peak at
the specular condition and for other orientations of lamellae in order to determine
the size of ordered domains for these different structures that can occur at different
depths from the interface. Further, measurements of the specular reflected signal at
fixed incoming and outgoing beam angles were made as the sample is rotated. This
type of rocking curve measurement provides information about the extent of lamellar
alignment at the interface as diffraction occurs only when the Bragg condition is met.

Neutrons have a high penetration depth into some materials such as silicon, which
makes them a useful tool to study the structures at solid/liquid or so-called buried
interfaces. Neutrons are transmitted, refracted or reflected when at an interface.
The interfaces relevant for neutrons are the boundaries between layers with different
scattering length density. The scattering length density, ρ, of a material is given by:

ρ = Σnibi (1)

where ni is the number density for atoms of element i, and bi is the scattering length.
The scattering length represents the interaction potential of each element with neu-
trons and varies between different elements and isotopes. For example, neutrons have
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Table 1. Parameters used for modeling multilayer structure.

Name Formula Formula

Mass/

g mol−1

Density/

g cm−3
Molecular

or formula

volume/Å3

Scattering

length

Σb/fm

ρ/10−6Å−2

Heavy

water

D2O 20.03 1.105 30.0 19.1 6.35

Water H2O 18.02 0.9975 30.0 −1.7 −0.56

Silicon Si 28.08 2.33 12.9 4.14 2.07

Silicon

oxide

(silica)

SiO2 60.08 2.16 46.2 15.7 3.41

Brij L4 C12H25(OCH2CH2)4OH 362.54 0.95 633.7 4.89 0.10

Brij L4

tail

C12H25 169.33 0.75 374.9 −13.72 −0.40

Brij L4

head

(OCH2CH2)4OH 170.33 0.99 258.8 18.62 0.70

very different scattering length densities for H2O and D2O, see Table 1 for the val-
ues. Neutron reflectometry thus benefits from using H2O, D2O or a mixture of H2O
and D2O to change the contrast and enhance the signal from particular components.
The refractive index, nr, for neutrons for a material is calculated from the scattering
length density and wavelength, λ, as nr = 1− (λ2ρ/2π).

In this study, neutron reflectometry was used to investigate the structure of the
Brij L4 lamellar phase and the ordering of the lamellar structure close to rough
and smooth surfaces. The reflectivity, R(Q) is the ratio between the intensity of the
reflected and incident beams at the specular condition, θi = θf , where θi is the angle
of the incident beam and θf is the angle of the outgoing beam. At the specular con-
dition, the momentum transfer Q is perpendicular to the interface, and the recorded
signal provides information about the thickness, composition, and roughness of layers
parallel to the interface. Reflectivity data at commonly shown against the magnitude
of Q perpendicular to the interface and is given by:

Q = (4π/λ) sin(θi) (2)

where λ is the wavelength of the neutrons. The specular reflection has momentum
transfer normal to the interface and so depends on the average scattering length
density in layers parallel to a surface.

Scattering that is observed in other directions will provide information about
other aspects of the structure such as that in the plane of the interface. At normal
incidence a typical attenuation length for concentrated surfactants in D2O is about
1 mm and this is determined by the total cross-section for scattering and absorption.
This is often dominated by the incoherent scattering from hydrogenous material.
Importantly the depth that is probed in a scattering experiment can be varied by
changing the angle of incidence [27]. For low angles of incidence, the consequent
long path length may limit the depth that is investigated to about 0.01 to 0.1 mm.
Thus, in contrast to reflection that will explore depths limited by the coherence of
the neutron beam or the structure at the interface, other low angle scattering will
be averaged over the penetration depth of the beam. The combination of scattering
observed away from the specular reflection and measurements of reflectivity therefore
allows the structure to be investigated at different depths from an interface.

Measurements and data treatment

Neutron reflection experiments were performed on the MARIA reflectometer at MLZ,
Munich [28,29], which operates using a monochromatic beam and a vertical sample
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orientation. The resolution of MARIA is determined primarily by its 10% spread of
wavelength. Reflectivity data were collected with two different wavelengths, having
a small overlapping region. Reflectivity data for Q < 0.042 Å−1 were collected with
λ = 10 Å and in the range 0.035 Å−1 < Q < 0.45 Å−1 with λ = 5 Å.

Data reduction: The neutron signal on MARIA, is counted using a two-dimensional
position sensitive detector, that allows the signal from both the specular reflection
and the off-specular scattering to be recorded simultaneously. As described above,
this allows interesting comparisons of interfacial ordering of lamellae and determining
how far the oriented structure extends towards the bulk of the sample. However, it
causes some challenges in the data reduction. Measurements consisted of coupled
scans of the sample and detector, set in such way that the center of the detector
meets the specular condition. Reflectivity values are obtained fitting a Gaussian peak
at the center of the detector, additionally allowing for a background determination.
However, for a strongly scattering sample such as our system, the Bragg diffraction
peaks from the bulk, which can fall on either side of the region of interest of the
detector for evaluation of the intensity of specular reflection depending on the sample
alignment, contribute significantly to the background. Hence estimating the absolute
reflectivity and subtracting the signal on the sides of the intense Bragg peaks becomes
challenging (see Fig. S3, supporting information as an example). The effect becomes
more pronounced when the Bragg peak is wider or there is more diffuse scattering due
to random alignment of the surfactant structure, and much less pronounced when the
Bragg peak is at the specular condition. The data recorded at all angles are subjected
to the same reduction algorithm. However, since at low Q (<0.05 Å−1) the signal
to noise ratio is significantly smaller, the relative magnitude of the specular signal
and the recorded noise does not allow a reliable discrimination of the reflectivity.
Therefore, this region has been excluded from fitting of reflectivity data.

3 Materials

In the present study we used the non-ionic surfactant Brij L4, which has an average
formula C12H25(OCH2CH2)4OH (tetraethylene glycol dodecyl ether), or C12EO4,
although there is some distribution of number of ethylene oxide moieties (Sigma
Aldrich, P4391) and was diluted in water to concentrations of 40 and 55 vol.%. The
sample at the higher concentration was very viscous and was stirred using a glass
rod for about two minutes to make certain it was uniformly mixed. Previous studies
reported the phase diagram of C12EO4 in H2O [30] and the phase diagram of shorter
(C12EO3) or longer (C12EO5) surfactants [31,32]. Figure S1, in the supporting infor-
mation, shows the phase diagram for C12EO4 in H2O from Mitchell et al., [30] with
the region measured in this study marked in red. The exact phase boundaries that
have been reported, with respect to temperature and concentration, differ slightly.
However, they all agree that both 40 and 55 vol.% Brij L4 is in the lamellar phase
for the temperature range measured in these experiments.

Silicon crystals 5 cm× 5 cm× 1 cm cut with (111) planes on the large face were
purchased from Crystran. One of the crystals was used with the polished smooth sur-
face and the other crystal was etched and roughened in basic solution (pure Decon90)
for 24 hours. The roughness of the crystals was checked with atomic force microscopy
(see Fig. S2a, supporting information) and X-ray reflectivity measurements. Neutron
reflectivity data (explained below) from the clean surface before injecting the samples
are shown in Figure S2b, in supporting information. Both crystals were cleaned as
described in our previous studies (see Ref. [33] for details). The cleaned crystals were
characterized using neutron reflectivity with D2O, H2O and a mixture of water that
is neutron refractive index matched to silicon in order to determine the thickness of
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the oxide layer and roughness of the surface, in-situ prior to the sample injection. The
smooth crystal surface was found to have an oxide (SiO2) layer that was ∼10 Å thick
and with a roughness of ∼3 Å. The rough crystal was found to have a porous oxide
layer with about 20% water in a layer of 60 Å thickness with roughness of ∼30 Å.

3.1 Reflectivity from Brij L4

The reflectivity for a particular scattering length density profile can be calculated
using the optical matrix method of Abelès [34,35]. Reflectivity data for the Brij
lamellar structures were modelled using the byban program available on the web [36]
which has been described also by Hellsing et al. [37]. The program allows the model
of a repeating lamellar to be constrained by imposing stoichiometry for the head and
tail groups of the surfactant molecule. The structural parameters used for modelling
the reflectivity profile in this study were the thickness of the head, th, and tail, tt,
region of surfactant, the area per molecule, A, the interlayer distance occupied by
solvent, ts, lamellar displacement due to thermal fluctuation, ζ, and the number of
layers, N. The slight difference between the present model and Hellsing et al. [37]
is that we treated the bilayer as a four-layer structure with separate hydrophilic
head and hydrophobic tail layers (see Fig. 1), whereas Hellsing et al. have used a
simplified two-layer structure: one layer consists of surfactant including both heads
and tails and a second solvent layer. We also had to vary the number of layers to
model adequately the strong signal observed in some reflectivity curves. The number
of layers in this program is an integer which was manually adjusted until the model
could fit the intensity of the at least the first Bragg peak which was highly influenced
by this parameter. Figure 1 shows a schematic diagram of the first few layers of the
lamellar structure and the corresponding scattering length density profile calculated
for 55 vol.% Brij L4 at the Si/SiO2/D2O interface. The total bilayer thickness, d, is
calculated as:

d = 2th + tt + ts. (3)

The intensity and width of the observed peaks depends primarily on the scattering
length density contrast and the number of the repeating layers. The width of the
observed peak is also strongly influenced by the instrumental resolution. Our analysis
allows convolution of the instrumental resolution in Q space with the model during
the fitting process.

The lamellar structure never consists simply of a perfect multilayer of sheets of
molecules parallel to the surface. The long-range order of the lamellar structure can
be perturbed by different types of disorder that should be considered when modelling
reflectivity data. One type of disorder occurs due to thermal motion that causes the
layers to fluctuate slightly around their mean position. This type of fluctuation is
different to the intermixing or roughness of adjacent layers which can be included
in models using the methods described by Névot and Croce [38]. In the case of
thermal fluctuations, the thickness and composition of different parts of the bilayer
remain unchanged and a single bilayer fluctuates as a coherent unit (head and tail
regions together) giving rise to local curvature of the layer. However, the fluctuation
of different bilayers that are separated with a solvent layer, is not correlated and
this decreases the intensity of the observed Bragg peaks. Thermal fluctuations can
be in the same order as the lamellar spacing while for “roughness” to be physically
meaningful, must be smaller than the thickness of layers and in the case of our model
is constrained to be a fraction of the thickness that is not allowed to exceed 0.3.

The scattered intensity, I(Q), depends on the shape and size of inhomogeneities
or differences in scattering length density, as well as the correlations between these
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Fig. 1. Scattering length density profile of the lamellar structure supported on a silica
surface. th refers to the thickness of the head group, tt to the thickness of tail group, ts to
thickness of solvent layer, A is the area per molecule and d to the total bilayer thickness.

regions. Thermal disorder reduces the scattered intensity with an exponential
dependence on the squared amplitude of the fluctuations, ξ [39,40]:

I (Q) ∝ exp (−2w) (4)

where 2w is known as the Debye-Waller factor that is defined as Q2ξ2/3. Disorder
due to bending fluctuations is pronounced in the surfactant lamellar phases and can
be related to the thermal fluctuations described by the Debye-Waller factor. These
fluctuations for a membrane can be calculated from the Caillé parameter [41], η
that depends on the bending modulus, K, and the compression modulus, B, of the
lamellae and is given by:

η =
πkBT

2d2
√
KB

. (5)

kB is Boltzmann’s constant, T is the temperature, and d is the repeat distance of the
bilayer [42].

This parameter can be related directly to the amplitude of the thermal fluctua-
tions by:

η =
ξ2π2

d2
(6)

where ξ is the mean displacement from the central value [43]. These equations allow
the mechanical response to be related to reflectivity and scattering data. In the
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present study, the mean displacement of the lamellae due to thermal fluctuations
obtained from fitting reflectivity data was used to calculate the Caillé parameter and
hence provide an estimate of the modulus.

Another type of disorder occurs due to small variations in the spacing of the
layers and this decreases the intensity of the peaks very significantly. This type of
disorder can be calculated for a structure with a variation in the lamellar spacing
and this has been shown to decrease the intensity of Bragg peaks significantly. The
reflectivity data measured for the samples in the present study show strong Bragg
peaks including higher order diffraction and so the effect of this type of disorder is
likely to be insignificant. During the analysis of the data, we tested a model gradient
in composition of the bilayers at different depths from the interface. However, this
resulted in a significant decrease in the intensity of the Bragg peaks, which could not
be compensated by varying other parameters, which suggests that the effect of such
disorder in the present system is insignificant.

As mentioned previously, reflectivity data provide structural information about
the material forming structure parallel to the solid surface. Only a restricted number
of parameters can be fitted unambiguously to reflectivity data, hence minimizing
the number of freely variable parameters is a challenge that requires use of known
constraints of composition and molecular structure. The present study work modeled
the lamellar structure as a simple four-layer structure with a displacement which can
arise from the combination of the various different types of disorder (mentioned
above) and varies primarily with the temperature. Both the thermal fluctuations
and misorientation induced by fixed structure at the interface influence the relative
intensity of the different order Bragg peaks and also cause them to broaden.

In order to check independently the alignment of the lamellar sheets with the
interface, the reflection was also measured while moving the sample over a small
range of angles around the first order Bragg peak. This type of measurement is
called a rocking curve where the full width half maximum (FWHM) of the intensity
observed at the center of the detector gives an estimate of the alignment of the layers
parallel to the interface.

Further analysis was performed by looking at the intensity distribution of the
Bragg peaks at both specular and off-specular condition. For a perfect lamellar struc-
ture Bragg peaks with equal spacing are expected. The intensity of the peaks depends
on the contrast and number of bilayers, and the width of the peaks depends on the
crystal size (number of layers) and the instrumental resolution. Typically, in a reflec-
tometry experiment the penetration depth of the beam depends on the attenuation
coefficient and the incident angle of the beam, wavelength of neutrons and the criti-
cal angle of the interface [27] although the layers resolved at the interface would be
limited by coherence as mentioned above. When the Bragg peaks are observed at
the specular condition diffraction arises from crystal planes aligned parallel to the
surface. The width provides information about the overall thickness of the aligned
material at the surface. When diffraction is observed from other orientations, the
Bragg peak appears at an off-specular condition and the depth probed depends on
the penetration depth. The grain size is obtained for the crystallites forming parallel
and non-parallel to the solid surface using the Debye-Scherrer formula [40,44]:

D =
0.9λ

βcos (θi)
(7)

where D is the crystallite size and β is the FWHM of the Bragg peak in radians.
Note that the FWHM should be corrected for the resolution of the instrument. The
resolution of MARIA is dominated by the 10% wavelength resolution, broadening
the observed Bragg peaks and this has been included in the models. The domain size
of the lamellae that may be oriented in other directions and are not parallel to the
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solid surface, was calculated using equation (7) from the width of the Bragg peaks
when they are away from the specular condition.

3.2 Sample holder

The sample holder for this experiment has been described previously [45]. Briefly, in
the set up for this experiment, the sample was sealed with a PTFE gasket between
the silicon crystal and a polycarbonate base with injection and outlet ports. The
temperature of the cell was controlled using a Julabo bath, circulating water through
the aluminum parts that clamp the crystal and the base. The sample was injected
into the cell at 20 ◦C and the measured at 20, 30, 40, 50, 60 ◦C and again at 20 ◦C
after exposure to the high temperature. This sequence of heating and subsequent
cooling can be understood as allowing an observation of the influence of annealing
at an elevated temperature. For each temperature rise, a pause of about 10 min was
performed before data collection. On cooling, a longer interval of 30 min was allowed
for thermal equilibration of the water circulating bath and sample.

4 Results and discussion

Figure 2 shows the reflectivity data and the model fits from 55 vol.% Brij L4 at
20 ◦C (after injecting the sample), on the left, and after heating and then cooling
the sample back to 20 ◦C on the right side. Fitting parameters obtained from the
model fits for the sample at different temperatures at both surfaces are presented
in Table S1, supporting information. The reflectivity data show several orders of
Bragg peaks, which is an indication of many lamellae aligning themselves parallel to
the surface. The sample exhibits very strong reflection, with the first order Bragg
peak reaching more than 10% of the incident beam intensity, corresponding to a
reflectivity >0.1. A self-organizing sample with such strong scattering provides a
good model system to study the effect of different parameters on the distortion of
the lamellar structure. A similar reflectivity magnitude has been observed previously
from self-assembled micellar crystals such as those formed with Pluronic F127 (EO99–
PO56–EO99) polymeric surfactant in water [46].

Modelling the reflectivity data showed that surfactants self-assemble into mul-
tilayer structure with a bilayer thickness of ∼58 Å aligning with the solid surface.
This spacing corresponds to the spacing expected for 55 vol.% Brij L4 in water and
suggests that surface structure resembles the bulk. It is interesting to compare the
present results with other systems, such as sodium aerosol-OT in water. The lamellar
phase forms at low concentrations, about 10%, because of the charge on the ionic
groups and it forms multilayer structures at various interfaces [47,48] at even lower
concentrations. The spacing observed even at the lowest concentrations corresponded
to 10% surfactant [49]. This has indicated that a surface pre-transition occurred in
that system.

At Q < 0.08 Å−1 there is a large contribution to the background due to diffraction
from the bulk of the sample as mentioned above and this region was excluded from
the fits. As expected, the observed intensity is larger than the calculated reflectivity
because extra intensity is contributed from a distribution of crystallites in the bulk
with less-defined orientation.

The same surfactant sample shows different reflectivity at the rough and smooth
surfaces. The difference is very clear in the intensity of the first order Bragg peak
which showed to be highly influenced by the repetition number of bilayers. At 20 ◦C
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Fig. 2. Reflectivity data from Brij L4 against the smooth surface (triangles) and the rough
surface (squares) after sample injection at 20 ◦C on the left, and after heating the sample
at 20 ◦C, on the right side.

Fig. 3. Changes in the absolute reflectivity of the different order Bragg peaks with tem-
perature, for the sample at the smooth surface (triangles) and the rough surface (squares).
Open symbols indicate the values for the previously heated sample at 20 ◦C.

(left side of Fig. 2), the number of the lamellar sheets parallel to the surface at the
smooth surface was found to be approximately 100 whereas that for the rough surface
is around 30 repetitions. This shows that roughness even smaller than the lamellar
spacing can disturb the layering and structure of self-assembled lamellae.

The effect of temperature change on the intensity of the different order Bragg
peaks is shown in Figure 3. It is evident that the intensity of peaks increases with
temperature for both surfaces and that the increase is more pronounced for the
sample in contact with the smooth surface (larger gradient). The parameters that
describe the fits to the reflectivity curves at the various temperatures are shown in
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Fig. 4. Changes in thermal fluctuations, determined as the displacement of the layer
described by a Debye-Waller factor, with temperature obtained from modelling reflectiv-
ity data for the smooth (triangles) and rough (squares) surfaces. The open symbols indicate
the values after heating and then cooling the structure.

the supporting information (Tab. S1). The disorder, which is approximated as a root
mean square displacement, increases with temperature but the other changes are
small. The number of water molecules per surfactant molecule remains in the range
6 to 8. A significant effect was found to be the increase in the number of layers (N)
that are aligned at the interface. Our results show that increasing the temperature
helps the lamellar structure to order and align particularly for the case of the smooth
surface. As a result of increasing the temperature, thermal fluctuations in the struc-
ture play an important role in changing the relative intensity of the peaks. The mean
displacement of lamellae due to thermal fluctuations obtained from the model fits at
each temperature is shown in Figure 4. The amplitude of the thermal fluctuations
that are reported in Figure 4 are of the same order as the roughness at the smooth
surface. For the rough surface the local static variations in height are significantly
larger than the thermal fluctuations and are seen to reduce substantially the orien-
tational alignment. Some further test measurements on a surface with at least 100 Å
roughness did not show significant specular scattering but only the diffraction from
bulk lamellar phase with poor alignment. The data for the sample did not allow fur-
ther quantitative evaluation. These results correlate with observations of Imai et al.
that large spherical particles completely destroy lamellar order in the similar system
of C12EO5/water [21].

The Caillé parameter for the lamellae calculated from equation 6 was found
to increase from 0.04 at 20 ◦C to 0.18 at 60 ◦C. This can be compared, for exam-
ple, to values of 0.25 and 0.15 reported respectively for AOT/water and didodecyl
dimethyl ammonium bromide (DDAB)/water systems at room temperature [50], or
0.08 reported for lipid bilayers formed from DMPC (1,2-dimyristoyl-sn-glycero-3-
phosphocholine) at 30 ◦C [42]. From the Caillé parameter and using equation 5, the
product of the bending and compression moduli can be calculated. This suggests that
the surfactant lamellae have broadly similar elastic moduli to those of saturated phos-
pholipid membranes. Another parameter that might be used to distinguish between
the two moduli, is the smectic penetration depth, Λ, which is the square root of the
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ratio of the bending modulus, K, and the compression modulus, B, of the membrane
[23]:

Λ =

√
K

B
. (8)

As explained previously by Salditt et al. [51], for the case of a well-ordered multilayer
where a small smectic penetration depth is expected, Λ can be derived from careful
analysis of off-specular and diffuse scattering data. In order to do that, high resolution
scattering data in the lateral direction are required which were not accessible in
the present experiment. Further, Broton et al. [23] have shown that scattering from
multilayers with smectic penetration lengths that are several orders of magnitude
different, vary most noticeably in higher Q. For our sample, the measured signal in
that region is dominated by the background. Consequently, the experimental results
and analysis in the present study, have primarily focused on interpretation of the
disorder caused by the surface roughness on the structure of layers in the direction
perpendicular to the interface.

The displacement of the surfactant layers increased as expected with tempera-
ture [49] in a similar way for Brij against both surfaces. However, when the sample is
cooled again to 20 ◦C, after heating, the displacement for the Brij against the smooth
surface is observed to be very small or even negligible. It is smaller than that seen after
the initial injection of the sample at 20 ◦C. An explanation could be that when the
sample was injected, part of the structure was dominated by the influence of flow on
the orientation. The effect of shear flow on decreasing the ordering and alignment of
lamellar structures has been shown previously for an AOT system [52]. Possibly such
an alignment could have caused extra fluctuations that remain “frozen” and which
could not be distinguished from the thermal fluctuations. While increasing temper-
ature increases the fluctuations, the annealing allows the surfactants to align better
with the surface. For the Brij at the rough surface, however, roughness distortion was
strong enough to prevent further improvement of the alignment. Another explana-
tion could be that the packing of surfactant molecules changes during the annealing
process. It has been observed previously that in the case of alkyl-aryl-ethylene oxide
amphiphiles, the ethylene oxide chains are aligned normal to the surface of the layers,
and the alkyl chains are tilted 25◦ relative to the surface normal at room tempera-
ture, however when the sample is annealed at higher temperatures, both tails align
themselves normal to the interface [53]. Detailed studies are required to understand
structural changes occurring during the thermal annealing process.

Annealing the sample showed a significant increase in the intensity of the diffrac-
tion, in particular the higher order Bragg peaks. The third order peak could be seen
when the temperature was increased, indicating that the number of layers aligned
with the planar surface increased. Annealing showed a stronger effect on the sample
at the smooth surface compared to the rough one. The number of the aligned layers at
the smooth surface increased to at least 120 layers whereas that at the rough surface
was about 70 layers. Note that 120 bilayers correspond to a thickness of approxi-
mately 0.7µm which for a typical reflectometry experiment is approximately same
as the coherency length of the beam in z direction. This suggests that the number of
layers may be larger than 120 but adding them do not make a significant change in
the intensity to the measured signal.

The parameters obtained from modeling reflectivity data have uncertainties that
arise from both data reduction and analysis. However, the uncertainty, for example
in the number of layers can affect the results up to 20% but does not explain the
significant difference for the same sample against the two different surfaces. Param-
eters such as number of stacked bilayer and the hydration of the layers are strongly
affected by the relative intensity of the various different order Bragg peaks where
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Fig. 5. Scattering pattern observed on the two-dimensional detector when the first order
Bragg peak is in the specular condition (a and b) and the sum of the intensity in verti-
cal lines down the detector (c) showing the different FWHM. The sample corresponds to
55 vol.% Brij L4 in D2O. Data are shown for the sample after heating when measured at
20 ◦C.

distinguishing the true reflectivity data from the background is relatively straight-
forward.

One of the evident differences between the reflectivity from the sample at two
surfaces was the intensity of the Bragg peaks. Figures 5a and 5b show the two-
dimensional shape of the first order Bragg peaks when the peak is at the specular
reflection condition, after heating and then cooling the sample. The sum along the
vertical direction for each of the detector image is shown in Figure 5c. The first order
Bragg peak from the sample at the rough surface is less intense and more diffuse.
The peak has nearly twice the width, which indicates again that layers of surfactant
are less well-aligned with the interface. This was consistent with the results obtained
from the model fits that there are nearly twice as many layers aligned with the smooth
surface at as compared to the rough surface. The grain size obtained from the width
of the first order Bragg peak at specular condition using equation (7) showed that
the number of layers parallel to the surface is the same order as that obtained from
fitting the full reflectivity curve (i.e. over 100 layers for the sample against the smooth
surface and about 70 for the sample against the rough surface.).

The crystallite size of lamellae that were not aligned parallel to the substrate was
estimated using equation (7) for the diffraction data measured in the off-specular
condition and the results are shown in Figure S8, supporting information. For the
sample that was against the smooth surface, the grain or crystal size corresponded to
25 layers whereas for the sample at rough surface it was about 17 layers. This suggests,
given the calculated penetration of 10 s of µm that the influence of the interface can
extend deep into the bulk of the sample altering the size of even randomly oriented
crystallites. However, part of the initial alignment and domain size may arise from the
flow that occurs on filling the cell. This is likely to be different for the two surfaces.

The overall description of the structure aligned with the surface and aligned in
other directions, is confirmed by looking at the width of the first order peak from the
lamellar structure as the sample is scanned in angle. This is shown in Figure 6. The
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Fig. 6. Width of the 1st order diffraction peak for 55 vol.% Brij L4 in D2O after heating
measured at 20 ◦C as a function of sample orientation with respect to the incident beam,
θi. When the diffraction peak is at the specular condition marked narrowing occurs as there
are many well-aligned layers at the interface, particularly for the smooth surface. Note that
the specular reflection occurs at θi = θf = 2.5 degrees.

peak is seen on the detector for a range of angles either side of the condition where
it is aligned with the specular reflection. On either side of the specular condition
the peak is broad. It becomes markedly narrower at the specular reflection. At the
specular condition, the peak width is much narrower although the effect is more
pronounced for the smooth surface. The different domain size found for randomly
oriented lamellae, is again indicative of the surface or the flow altering the overall
structural morphology when the cell is filled.

The rocking scans measured at the highest temperature and after cooling the
sample back to 20 ◦C are shown in Figure 7. There is a significant difference at
each temperature between the rocking curves measured for the sample against the
two surfaces. Rocking scans for the sample are sharper and more intense when the
sample is adjacent to the smooth surface, which confirms the results found from
the model fits that the lamellar forms a better-aligned structure at that interface.

The intensity of the peaks after heating and subsequent cooling for the sample
are increased compared to those measured at 60 ◦C for both surfaces. This increase
was however more pronounced for the sample at the smooth surface. This shows that
annealing effect can improve the alignment at the smooth surface more than that at
the rough surface.

The effects of surface roughness and the temperature were similar on the intensity
and the width of the reflectivity peaks as well as for the rocking curves measured for
a sample of 40 vol.% Brij in D2O against the same smooth and rough surfaces (see
Figs. S4–S7, supporting information). However, modelling the data and obtaining
quantitative values for the fit parameters was more challenging than for the more
concentrated system. The lamellar spacing becomes larger and the different order
Bragg peaks are close to each other. Hence the effects of overlapping peaks are more
pronounced. This means that estimating reflectivity and subtracting the true back-
ground from overlapping peaks becomes very challenging.

As previously, the strong Bragg peaks indicate clearly a layered structure. The
position of the first order Bragg peak corresponds to a repeat distance of 84 Å for the
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Fig. 7. Rocking curves measured on the first-order Bragg peak for 55 vol.% Brij L4 in D2O
at the highest temperature and after heating. Ω is the angle of the sample.

bilayers. For a dilution from 55 vol.% to 40 vol.% surfactant, the spacing is expected
to change from 58 Å to 80 Å. This correspondence is close enough to suggest that the
lamellar structure at the interface corresponds to the bulk concentration.

The reflection peak that is shown in Figure 5 is apparently on a background
that is part of a Debye-Scherrer ring of diffracted intensity from the bulk that is
partially aligned. The slit collimation used in this experiment and the relatively
small part of the total scattering that is observable on the two-dimensional detector
precludes quantitative determination of the orientation distribution. The curvature
of this background is also apparent in the profiles obtained by summing vertically
that are shown in Figure S3 with a tail of higher intensity on the low-angle side
of the diffraction peak. The other apparent texture in the observed peaks probably
arises from the non-uniform distribution of neutron flux in the guide system of the
reflectometer but this spatial variation is not significant in respect of the analysis of
integrated intensities that has been described above. A more advanced data analysis
that would include these features, might allow further information to be obtained
from the background scattering.

5 Conclusions

The well-aligned multilayer structure formed at a solid/liquid interface allows better
determination of Bragg peak intensity than experiments on randomly aligned lamellar
aggregates as seen in conventional small-angle neutron scattering such as those of
Strey et al. [32]. The present study has exploited this advantage to explore the effect
of surface roughness and temperature on the alignment of the non-ionic surfactant,
C12EO4, at solid surfaces using neutron reflectometry and small-angle scattering.
The results showed that 55 vol.% C12EO4 in D2O self-assembles into multilayer layer
structures aligned with the surface that extends about 1µm into the bulk. Such a
system provides a model for understanding physics of multilayers. Roughness of the
order of the lamellar spacing reduces, but did not completely eliminate the alignment
of the lamellar structure at the interface. At a smooth surface, heating the sample
and subsequent cooling back to 20 ◦C increases the number of aligned bilayers from
100 to 120 layers. For the rough surface this increase was from 30 to 70 layers.
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In general fluctuations determined from the reflectivity were found to increase as
expected with temperature. The reversibility was found to be different for the sample
near smooth and rough surfaces, as it is apparent that near the smooth surface
some static disorder was present in the initial sample. A possible explanation could
be that when the sample was measured at 20 ◦C immediately after injection, the
alignment was influenced by the flow orientation. When the sample is heated, the
larger fluctuations can allow the sample to align with the interface.

The major features of the orientation and structure are found also at the lower sur-
factant concentration of 40 vol.%. This implies that structures tailored with particular
lamellar spacings can be obtained simply by concentration change. It is interesting
that very strong diffraction can be obtained from fluid samples, reaching more than
0.1 in reflectivity. The width of the Bragg diffraction peak can be modified by simple
thermal treatment. Such a sample provides an ideal model system to study differ-
ent types of disorder in the self-assembled structures and to explore the advantages
and/or limitations of technique.
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