001     889074
005     20240711085558.0
024 7 _ |a 10.1111/jace.17582
|2 doi
024 7 _ |a 0002-7820
|2 ISSN
024 7 _ |a 1551-2916
|2 ISSN
024 7 _ |a 2128/27162
|2 Handle
024 7 _ |a WOS:000599727500001
|2 WOS
037 _ _ |a FZJ-2021-00010
082 _ _ |a 660
100 1 _ |a Badie, Sylvain
|0 P:(DE-Juel1)176279
|b 0
|e Corresponding author
245 _ _ |a Synthesis, sintering, and effect of surface roughness on oxidation of submicron Ti 2 AlC ceramics
260 _ _ |a Westerville, Ohio
|c 2021
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1648127754_25708
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Submicron Ti2AlC MAX phase powder was synthesized by molten salt shielded synthesis (MS3) using a Ti:Al:C molar ratio of 2:1:0.9 at a process temperature of 1000°C for 5 hours. The synthesized powder presented a mean particle size of ~0.9 µm and a purity of 91 wt. % Ti2AlC, containing 6 wt. % Ti3AlC2. The Ti2AlC powder was sintered by pressureless sintering, achieving a maximal relative density of 90%, hence field‐assisted sintering technology/spark plasma sintering was used to enhance densification. The fine‐grained microstructure was preserved, and phase purity of Ti2AlC was unaltered in the latter case, with a relative density of 98.5%. Oxidation was performed at 1200°C for 50 hours in static air of dense monolithic Ti2AlC with different surface finish, (polished, ground and sandblasted) which resulted in the formation of an approx. 8 µm thin aluminum oxide (Al2O3) layer decorated with titanium dioxide (rutile, TiO2) colonies. Surface quality had no influence on Al2O3 scale thickness, but the amount and size of TiO2 crystals increased with surface roughness. A phenomenon of rumpling of the thermally grown oxide (TGO) was observed and a model to estimate the extent of deformation is proposed.
536 _ _ |a 1241 - Gas turbines (POF4-124)
|0 G:(DE-HGF)POF4-1241
|c POF4-124
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dash, Apurv
|0 P:(DE-Juel1)171462
|b 1
700 1 _ |a Sohn, Yoo Jung
|0 P:(DE-Juel1)159368
|b 2
|u fzj
700 1 _ |a Vaßen, Robert
|0 P:(DE-Juel1)129670
|b 3
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 4
700 1 _ |a Gonzalez‐Julian, Jesus
|0 P:(DE-Juel1)162271
|b 5
773 _ _ |a 10.1111/jace.17582
|g p. jace.17582
|0 PERI:(DE-600)2008170-4
|n 4
|p 1669-1688
|t Journal of the American Ceramic Society
|v 104
|y 2021
|x 1551-2916
856 4 _ |u https://juser.fz-juelich.de/record/889074/files/jace.17582.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889074
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176279
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171462
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159368
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129670
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162271
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1241
|x 0
913 0 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CERAM SOC : 2018
|d 2020-08-29
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-29
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21