001     889075
005     20220930130302.0
024 7 _ |a 10.1002/admi.202001477
|2 doi
024 7 _ |a 2128/27160
|2 Handle
024 7 _ |a WOS:000598649900001
|2 WOS
037 _ _ |a FZJ-2021-00011
082 _ _ |a 600
100 1 _ |a Yan, Hong
|0 P:(DE-Juel1)180225
|b 0
245 _ _ |a Stoichiometry and Termination Control of LaAlO 3 /SrTiO 3 Bilayer Interfaces
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1613142619_13161
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Driven by the interest in fundamental physics and potential applications in novel electronic devices, intense effort is devoted to integration of oxide‐based 2D electron gases (2DEGs) with other functional materials. As a classic model system, LaAlO3/SrTiO3 (LAO/STO) has gained significant attentions. However, due to limitations in synthesis and high demands on the involved thin films, the formation of conductive interfaces between artificially grown STO and LAO thin films is an extreme challenge; oftentimes these interfaces remain insulating or show poor transport properties, which inhibits the development of all‐thin‐film devices. Here, by adopting high temperature growth to achieve step‐flow growth mode and fine‐tuning the laser fluence during pulsed laser deposition, high quality homoepitaxial STO thin films with sufficiently low point‐defect concentration and controllable surface termination are obtained. Fully metallic 2DEGs are then realized at interfaces between STO thin films and both crystalline and amorphous LAO overlayers. The observed slightly reduced mobility in the bilayer LAO/STO/STO structures as compared with single‐layer LAO/STO structures is related to residual defect formation during STO synthesis, yielding a disordered metallic oxide system. The results give prospect of multilayer interfaces potentially accessible in superlattice structures and provide a reliable starting point for back‐gated all‐thin‐film field‐effect devices.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Börgers, Jacqueline Marie
|0 P:(DE-Juel1)172704
|b 1
700 1 _ |a Rose, Marc-André
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Baeumer, Christoph
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kim, Bongju
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jin, Lei
|0 P:(DE-Juel1)145711
|b 5
|u fzj
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 6
700 1 _ |a Gunkel, Felix
|0 P:(DE-Juel1)130677
|b 7
|e Corresponding author
773 _ _ |a 10.1002/admi.202001477
|g p. 2001477 -
|0 PERI:(DE-600)2750376-8
|n 3
|p 2001477
|t Advanced materials interfaces
|v 8
|y 2021
|x 2196-7350
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/889075/files/admi.202001477.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/889075/files/revised%20manuscript_%28ID%20admi.202001477%29%20%28non-marked%29_FG.pdf
909 C O |o oai:juser.fz-juelich.de:889075
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180225
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172704
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145711
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130677
913 0 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Controlling Collective States
|x 0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER INTERFACES : 2018
|d 2020-08-26
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-26
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-26
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21