000889095 001__ 889095
000889095 005__ 20230310131319.0
000889095 0247_ $$2doi$$a10.1063/5.0035707
000889095 0247_ $$2Handle$$a2128/27342
000889095 0247_ $$2WOS$$aWOS:000630052100003
000889095 0247_ $$2altmetric$$aaltmetric:117806409
000889095 037__ $$aFZJ-2021-00025
000889095 082__ $$a600
000889095 1001_ $$0P:(DE-HGF)0$$aRieck, Jan L.$$b0$$eCorresponding author
000889095 245__ $$aTrade-off between variability and retention of memristive epitaxial SrTiO 3 devices
000889095 260__ $$aMelville, NY$$bAIP Publ.$$c2021
000889095 3367_ $$2DRIVER$$aarticle
000889095 3367_ $$2DataCite$$aOutput Types/Journal article
000889095 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643899621_27541
000889095 3367_ $$2BibTeX$$aARTICLE
000889095 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889095 3367_ $$00$$2EndNote$$aJournal Article
000889095 520__ $$aWe present a study of the trade-off between the retention and variability of SrTiO3-based memristive devices. We identified the applied switching current and the device stoichiometry as main influence factors. We show that the SrO formation at the electrode interface, which has been revealed to improve the device retention significantly, is associated with an increased cycle-to-cycle and device-to-device variability. On the other hand, devices with homogeneous, Ti-terminated SrTiO3–Pt interfaces exhibit poor retention but the smallest variability. These results give valuable insights for the application of memristive SrTiO3 devices as non-volatile memory or in neural networks, where the control of variability is of key relevance.We acknowledge funding from the W2/W3 program of the Helmholtz Association. This research was supported by the Deutsche Forschungsgemeinschaft (Grant No. SFB 917 “Nanoswitches”), the Helmholtz Association Initiative and Networking Fund under Project No. SO-092 (Advanced Computing Architectures, ACA), and the Federal Ministry of Education and Research (Project NEUROTEC, Grant No. 16ES1133K).
000889095 536__ $$0G:(DE-HGF)POF4-523$$a523 - Neuromorphic Computing and Network Dynamics (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000889095 536__ $$0G:(BMBF)16ES1133K$$aVerbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC -, Teilvorhaben: Forschungszentrum Jülich (16ES1133K)$$c16ES1133K$$x1
000889095 536__ $$0G:(GEPRIS)167917811$$aDFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)$$c167917811$$x2
000889095 536__ $$0G:(DE-HGF)SO-092$$aACA - Advanced Computing Architectures (SO-092)$$cSO-092$$x3
000889095 588__ $$aDataset connected to CrossRef
000889095 7001_ $$0P:(DE-Juel1)165926$$aHensling, Felix V. E.$$b1
000889095 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b2$$eCorresponding author
000889095 773__ $$0PERI:(DE-600)2722985-3$$a10.1063/5.0035707$$gVol. 9, no. 2, p. 021110 -$$n2$$p021110 -$$tAPL materials$$v9$$x2166-532X$$y2021
000889095 8564_ $$uhttps://juser.fz-juelich.de/record/889095/files/APM_invoice_APM20-AR-01101_00480.pdf
000889095 8564_ $$uhttps://juser.fz-juelich.de/record/889095/files/5.0035707.pdf$$yOpenAccess
000889095 8767_ $$8APM20-AR-01101_00480$$92021-01-04$$d2021-01-07$$eAPC$$jZahlung erfolgt$$pAPM20-AR-01101$$z$2750, Belegnummer 1200161811
000889095 909CO $$ooai:juser.fz-juelich.de:889095$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000889095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b2$$kFZJ
000889095 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000889095 9130_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000889095 9141_ $$y2021
000889095 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-06
000889095 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-06
000889095 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-06
000889095 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889095 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPL MATER : 2018$$d2020-09-06
000889095 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-06
000889095 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-06
000889095 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-06
000889095 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-06
000889095 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-06
000889095 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-06
000889095 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889095 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-09-06
000889095 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-06
000889095 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-06
000889095 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-06
000889095 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-06
000889095 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000889095 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000889095 980__ $$ajournal
000889095 980__ $$aVDB
000889095 980__ $$aI:(DE-Juel1)PGI-7-20110106
000889095 980__ $$aI:(DE-82)080009_20140620
000889095 980__ $$aAPC
000889095 980__ $$aUNRESTRICTED
000889095 9801_ $$aAPC
000889095 9801_ $$aFullTexts