001     889095
005     20230310131319.0
024 7 _ |a 10.1063/5.0035707
|2 doi
024 7 _ |a 2128/27342
|2 Handle
024 7 _ |a WOS:000630052100003
|2 WOS
024 7 _ |a altmetric:117806409
|2 altmetric
037 _ _ |a FZJ-2021-00025
082 _ _ |a 600
100 1 _ |a Rieck, Jan L.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Trade-off between variability and retention of memristive epitaxial SrTiO 3 devices
260 _ _ |a Melville, NY
|c 2021
|b AIP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1643899621_27541
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present a study of the trade-off between the retention and variability of SrTiO3-based memristive devices. We identified the applied switching current and the device stoichiometry as main influence factors. We show that the SrO formation at the electrode interface, which has been revealed to improve the device retention significantly, is associated with an increased cycle-to-cycle and device-to-device variability. On the other hand, devices with homogeneous, Ti-terminated SrTiO3–Pt interfaces exhibit poor retention but the smallest variability. These results give valuable insights for the application of memristive SrTiO3 devices as non-volatile memory or in neural networks, where the control of variability is of key relevance.We acknowledge funding from the W2/W3 program of the Helmholtz Association. This research was supported by the Deutsche Forschungsgemeinschaft (Grant No. SFB 917 “Nanoswitches”), the Helmholtz Association Initiative and Networking Fund under Project No. SO-092 (Advanced Computing Architectures, ACA), and the Federal Ministry of Education and Research (Project NEUROTEC, Grant No. 16ES1133K).
536 _ _ |a 523 - Neuromorphic Computing and Network Dynamics (POF4-523)
|0 G:(DE-HGF)POF4-523
|c POF4-523
|x 0
|f POF IV
536 _ _ |a Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC -, Teilvorhaben: Forschungszentrum Jülich (16ES1133K)
|0 G:(BMBF)16ES1133K
|c 16ES1133K
|x 1
536 _ _ |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)
|0 G:(GEPRIS)167917811
|c 167917811
|x 2
536 _ _ |a ACA - Advanced Computing Architectures (SO-092)
|0 G:(DE-HGF)SO-092
|c SO-092
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hensling, Felix V. E.
|0 P:(DE-Juel1)165926
|b 1
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 2
|e Corresponding author
773 _ _ |a 10.1063/5.0035707
|g Vol. 9, no. 2, p. 021110 -
|0 PERI:(DE-600)2722985-3
|n 2
|p 021110 -
|t APL materials
|v 9
|y 2021
|x 2166-532X
856 4 _ |u https://juser.fz-juelich.de/record/889095/files/APM_invoice_APM20-AR-01101_00480.pdf
856 4 _ |u https://juser.fz-juelich.de/record/889095/files/5.0035707.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889095
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130620
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Controlling Electron Charge-Based Phenomena
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-06
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APL MATER : 2018
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-06
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-06
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2020-09-06
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-06
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21