000889105 001__ 889105
000889105 005__ 20210127115253.0
000889105 0247_ $$2doi$$a10.5281/ZENODO.4382017
000889105 0247_ $$2Handle$$a2128/26664
000889105 037__ $$aFZJ-2021-00035
000889105 041__ $$aen
000889105 088__ $$2Other$$aPRACE WP297
000889105 1001_ $$0P:(DE-Juel1)143791$$aO'Cais, Alan$$b0$$eCorresponding author$$ufzj
000889105 245__ $$aIntelligent HTC for Committor Analysis
000889105 260__ $$c2020
000889105 300__ $$a8 p.
000889105 3367_ $$2DRIVER$$areport
000889105 3367_ $$2ORCID$$aREPORT
000889105 3367_ $$010$$2EndNote$$aReport
000889105 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000889105 3367_ $$2DataCite$$aOutput Types/Report
000889105 3367_ $$2BibTeX$$aTECHREPORT
000889105 3367_ $$0PUB:(DE-HGF)15$$2PUB:(DE-HGF)$$aInternal Report$$bintrep$$mintrep$$s1609859178_7932
000889105 4900_ $$aPRACE White Paper$$v297
000889105 520__ $$aCommittor analysis is a powerful, but computationally expensive, tool to study reaction mechanisms in complex systems. The committor can also be used to generate initial trajectories for transition path sampling, a less-expensive technique to study reaction mechanisms. The main goal of the project was to facilitate an implementation of committor analysis in the software application OpenPathSampling (http://openpathsampling.org/) that is performance portable across a range of HPC hardware and hosting sites. We do this by the use of hardware-enabled MD engines in OpenPathSampling coupled with a custom library extension to the data analytics framework Dask (https://dask.org/) that allows for the execution of MPI-enabled tasks in a steerable High Throughput Computing workflow. The software developed here is being used to generate initial trajectories to study a conformational change in the main protease of the SARS-CoV-2 virus, which causes COVID-19. This conformational change may regulate the accessibility of the active site of the main protease, and a better understanding of its mechanism could aid drug design.
000889105 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000889105 536__ $$0G:(EU-Grant)676531$$aE-CAM - An e-infrastructure for software, training and consultancy in simulation and modelling (676531)$$c676531$$fH2020-EINFRA-2015-1$$x1
000889105 536__ $$0G:(DE-Juel1)prcoe02_20181001$$aPRACE CoE Allocation E-CAM (prcoe02_20181001)$$cprcoe02_20181001$$fPRACE CoE Allocation E-CAM$$x2
000889105 588__ $$aDataset connected to DataCite
000889105 7001_ $$0P:(DE-HGF)0$$aBialczak, Milosz$$b1
000889105 7001_ $$0P:(DE-HGF)0$$aSwenson, David$$b2
000889105 7001_ $$0P:(DE-HGF)0$$aUchronsk, Mariusz$$b3
000889105 7001_ $$0P:(DE-HGF)0$$aWlodarczyk, Adam$$b4
000889105 773__ $$a10.5281/ZENODO.4382017
000889105 8564_ $$uhttps://juser.fz-juelich.de/record/889105/files/WP297.pdf$$yOpenAccess
000889105 909CO $$ooai:juser.fz-juelich.de:889105$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000889105 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143791$$aForschungszentrum Jülich$$b0$$kFZJ
000889105 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000889105 9141_ $$y2020
000889105 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889105 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000889105 980__ $$aintrep
000889105 980__ $$aVDB
000889105 980__ $$aUNRESTRICTED
000889105 980__ $$abook
000889105 980__ $$aI:(DE-Juel1)JSC-20090406
000889105 9801_ $$aFullTexts