000889127 001__ 889127
000889127 005__ 20210127115256.0
000889127 020__ $$a978-3-030-47955-8
000889127 0247_ $$2Handle$$a2128/26674
000889127 0247_ $$2altmetric$$aaltmetric:87140320
000889127 037__ $$aFZJ-2021-00052
000889127 041__ $$aEnglish
000889127 1001_ $$0P:(DE-HGF)0$$aLengauer, Christian$$b0$$eCorresponding author
000889127 245__ $$aExaStencils: Advanced Multigrid Solver Generation
000889127 260__ $$aBerlin$$bSpringer$$c2020
000889127 29510 $$aSoftware for Exascale Computing - SPPEXA 2016-2019
000889127 300__ $$a405 - 452
000889127 3367_ $$2ORCID$$aBOOK_CHAPTER
000889127 3367_ $$07$$2EndNote$$aBook Section
000889127 3367_ $$2DRIVER$$abookPart
000889127 3367_ $$2BibTeX$$aINBOOK
000889127 3367_ $$2DataCite$$aOutput Types/Book chapter
000889127 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1609935250_6559
000889127 4900_ $$aLecture Notes in Computational Science and Engineering$$v136
000889127 520__ $$aPresent-day stencil codes are implemented in general-purpose programming languages, such as Fortran, C, or Java, Python or derivates thereof, and harnesses for parallelism, such as OpenMP, OpenCL or MPI. Project ExaStencils pursued a domain-specific approach with a language, called ExaSlang, that is stratified into four layers of abstraction, the most abstract being the formulation in continuous mathematics and the most concrete a full, automatically generated implementation. At every layer, the corresponding language expresses not only computational directives but also domain knowledge of the problem and platform to be leveraged for optimization. We describe the approach, the software technology behind it and several case studies that demonstrate its feasibility and versatility: high-performance stencil codes can be engineered, ported and optimized more easily and effectively.
000889127 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000889127 536__ $$0G:(GEPRIS)214420555$$aSPPEXA - Software for Exascale Computing (214420555)$$c214420555$$x1
000889127 7001_ $$0P:(DE-HGF)0$$aApel, Sven$$b1
000889127 7001_ $$0P:(DE-HGF)0$$aBolten, Matthias$$b2
000889127 7001_ $$0P:(DE-HGF)0$$aChiba, Shigeru$$b3
000889127 7001_ $$0P:(DE-HGF)0$$aRüde, Ulrich$$b4
000889127 7001_ $$0P:(DE-HGF)0$$aTeich, Jürgen$$b5
000889127 7001_ $$0P:(DE-HGF)0$$aGrößlinger, Armin$$b6
000889127 7001_ $$0P:(DE-HGF)0$$aHannig, Frank$$b7
000889127 7001_ $$0P:(DE-HGF)0$$aKöstler, Harald$$b8
000889127 7001_ $$0P:(DE-HGF)0$$aClaus, Lisa$$b9
000889127 7001_ $$0P:(DE-HGF)0$$aGrebhahn, Alexander$$b10
000889127 7001_ $$0P:(DE-HGF)0$$aGroth, Stefan$$b11
000889127 7001_ $$0P:(DE-HGF)0$$aKronawitter, Stefan$$b12
000889127 7001_ $$0P:(DE-HGF)0$$aKuckuk, Sebastian$$b13
000889127 7001_ $$0P:(DE-Juel1)174446$$aRittich, Hannah$$b14$$ufzj
000889127 7001_ $$0P:(DE-HGF)0$$aSchmitt, Christian$$b15
000889127 7001_ $$0P:(DE-HGF)0$$aSchmitt, Jonas$$b16
000889127 8564_ $$uhttps://juser.fz-juelich.de/record/889127/files/LengauerEtAl2020_ExaStencilsAdvancedMultigridSolverGeneration.pdf$$yOpenAccess
000889127 909CO $$ooai:juser.fz-juelich.de:889127$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174446$$aForschungszentrum Jülich$$b14$$kFZJ
000889127 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000889127 9141_ $$y2020
000889127 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889127 920__ $$lyes
000889127 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000889127 980__ $$acontb
000889127 980__ $$aVDB
000889127 980__ $$aUNRESTRICTED
000889127 980__ $$aI:(DE-Juel1)JSC-20090406
000889127 9801_ $$aFullTexts