001     889127
005     20210127115256.0
020 _ _ |a 978-3-030-47955-8
024 7 _ |a 2128/26674
|2 Handle
024 7 _ |a altmetric:87140320
|2 altmetric
037 _ _ |a FZJ-2021-00052
041 _ _ |a English
100 1 _ |a Lengauer, Christian
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a ExaStencils: Advanced Multigrid Solver Generation
260 _ _ |a Berlin
|c 2020
|b Springer
295 1 0 |a Software for Exascale Computing - SPPEXA 2016-2019
300 _ _ |a 405 - 452
336 7 _ |a BOOK_CHAPTER
|2 ORCID
336 7 _ |a Book Section
|0 7
|2 EndNote
336 7 _ |a bookPart
|2 DRIVER
336 7 _ |a INBOOK
|2 BibTeX
336 7 _ |a Output Types/Book chapter
|2 DataCite
336 7 _ |a Contribution to a book
|b contb
|m contb
|0 PUB:(DE-HGF)7
|s 1609935250_6559
|2 PUB:(DE-HGF)
490 0 _ |a Lecture Notes in Computational Science and Engineering
|v 136
520 _ _ |a Present-day stencil codes are implemented in general-purpose programming languages, such as Fortran, C, or Java, Python or derivates thereof, and harnesses for parallelism, such as OpenMP, OpenCL or MPI. Project ExaStencils pursued a domain-specific approach with a language, called ExaSlang, that is stratified into four layers of abstraction, the most abstract being the formulation in continuous mathematics and the most concrete a full, automatically generated implementation. At every layer, the corresponding language expresses not only computational directives but also domain knowledge of the problem and platform to be leveraged for optimization. We describe the approach, the software technology behind it and several case studies that demonstrate its feasibility and versatility: high-performance stencil codes can be engineered, ported and optimized more easily and effectively.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a SPPEXA - Software for Exascale Computing (214420555)
|0 G:(GEPRIS)214420555
|c 214420555
|x 1
700 1 _ |a Apel, Sven
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bolten, Matthias
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Chiba, Shigeru
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rüde, Ulrich
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Teich, Jürgen
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Größlinger, Armin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Hannig, Frank
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Köstler, Harald
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Claus, Lisa
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Grebhahn, Alexander
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Groth, Stefan
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Kronawitter, Stefan
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Kuckuk, Sebastian
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Rittich, Hannah
|0 P:(DE-Juel1)174446
|b 14
|u fzj
700 1 _ |a Schmitt, Christian
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Schmitt, Jonas
|0 P:(DE-HGF)0
|b 16
856 4 _ |u https://juser.fz-juelich.de/record/889127/files/LengauerEtAl2020_ExaStencilsAdvancedMultigridSolverGeneration.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889127
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)174446
913 1 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contb
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21