001     889130
005     20230418141423.0
024 7 _ |a 10.1007/s00767-020-00471-x
|2 doi
024 7 _ |a 1430-483X
|2 ISSN
024 7 _ |a 1432-1165
|2 ISSN
024 7 _ |a 2128/27398
|2 Handle
024 7 _ |a WOS:000605146100001
|2 WOS
037 _ _ |a FZJ-2021-00055
041 _ _ |a German
082 _ _ |a 550
100 1 _ |a Herrmann, Frank
|0 P:(DE-Juel1)141774
|b 0
|e Corresponding author
245 _ _ |a Mit der Modellkette RCP-GCM-RCM-mGROWA projizierte Grundwasserneubildung als Datenbasis für zukünftiges Grundwassermanagement in Nordrhein-Westfalen Groundwater recharge in North Rhine-Westphalia projected using the model chain RCP-GCM-RCM-mGROWA
260 _ _ |a Heidelberg
|c 2021
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639038153_6863
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In order to analyze the impact of climate change on groundwater resources in North Rhine-Westphalia a multi-model ensemble for projecting future groundwater recharge was established. The ensemble consists of 36 members of the model chain RCP-GCM-RCM-mGROWA in total, i.e. combinations of 3 greenhouse gas concentration trajectories, 6 global and 5 regional climate models, and the water balance model mGROWA. The ensemble projections show only a few significant changes of groundwater recharge in the future periods 2011–2040, 2041–2070, and 2071–2100. A robustness test using the two-criteria model agreement and the significance of the individual model projections did not reveal systematic and significant changes of groundwater recharge until 2100. From the statistical point of view, groundwater recharge can be expected to remain at the current level. Hydrometeorological, North Rhine-Westphalia is located in a transition zone in which the impact of the rising winter precipitation on groundwater recharge is counter-balanced by the impact of warming.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Geosciences
|0 V:(DE-MLZ)SciArea-140
|2 V:(DE-HGF)
|x 0
700 1 _ |a Keuler, Klaus
|0 0000-0002-3745-8125
|b 1
700 1 _ |a Wolters, Tim
|0 P:(DE-Juel1)177674
|b 2
700 1 _ |a Bergmann, Sabine
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eisele, Michael
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wendland, Frank
|0 P:(DE-Juel1)129554
|b 5
773 _ _ |a 10.1007/s00767-020-00471-x
|0 PERI:(DE-600)1481438-9
|p 17–31
|t Grundwasser
|v 26
|y 2021
|x 1432-1165
856 4 _ |u https://juser.fz-juelich.de/record/889130/files/Herrmann2021_Article_MitDerModellketteRCP-GCM-RCM-m.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889130
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)141774
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)177674
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129554
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
913 0 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Terrestrial Systems: From Observation to Prediction
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-31
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GRUNDWASSER : 2018
|d 2020-08-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-31
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2020-08-31
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-31
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-31
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-31
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-31
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-31
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21