000889133 001__ 889133
000889133 005__ 20210127115256.0
000889133 0247_ $$2doi$$a10.1103/PhysRevLett.125.052001
000889133 0247_ $$2ISSN$$a0031-9007
000889133 0247_ $$2ISSN$$a1079-7114
000889133 0247_ $$2ISSN$$a1092-0145
000889133 0247_ $$2Handle$$a2128/26679
000889133 0247_ $$2altmetric$$aaltmetric:75673931
000889133 0247_ $$2pmid$$a32794881
000889133 0247_ $$2WOS$$aWOS:000553250400006
000889133 037__ $$aFZJ-2021-00058
000889133 082__ $$a530
000889133 1001_ $$00000-0001-8071-8546$$aBorsanyi, Szabolcs$$b0$$eCorresponding author
000889133 245__ $$aQCD Crossover at Finite Chemical Potential from Lattice Simulations
000889133 260__ $$aCollege Park, Md.$$bAPS$$c2020
000889133 3367_ $$2DRIVER$$aarticle
000889133 3367_ $$2DataCite$$aOutput Types/Journal article
000889133 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1609943280_18363
000889133 3367_ $$2BibTeX$$aARTICLE
000889133 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889133 3367_ $$00$$2EndNote$$aJournal Article
000889133 520__ $$aWe provide the most accurate results for the QCD transition line so far. We optimize the definition of the crossover temperature Tc, allowing for its very precise determination, and extrapolate from imaginary chemical potential up to real μB≈300  MeV. The definition of Tc adopted in this work is based on the observation that the chiral susceptibility as a function of the condensate is an almost universal curve at zero and imaginary μB. We obtain the parameters κ2=0.0153(18) and κ4=0.00032(67) as a continuum extrapolation based on Nt=10, 12, 16 lattices with physical quark masses. We also extrapolate the peak value of the chiral susceptibility and the width of the chiral transition along the crossover line. In fact, both of these are consistent with a constant function of μB. We see no sign of criticality in the explored range.
000889133 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000889133 588__ $$aDataset connected to CrossRef
000889133 7001_ $$0P:(DE-HGF)0$$aFodor, Zoltan$$b1
000889133 7001_ $$0P:(DE-HGF)0$$aGuenther, Jana N.$$b2
000889133 7001_ $$00000-0001-9258-4397$$aKara, Ruben$$b3
000889133 7001_ $$0P:(DE-HGF)0$$aKatz, Sandor D.$$b4
000889133 7001_ $$00000-0002-4686-941X$$aParotto, Paolo$$b5
000889133 7001_ $$0P:(DE-HGF)0$$aPasztor, Attila$$b6
000889133 7001_ $$0P:(DE-HGF)0$$aRatti, Claudia$$b7
000889133 7001_ $$0P:(DE-Juel1)161563$$aSzabó, Kálman K.$$b8
000889133 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.125.052001$$gVol. 125, no. 5, p. 052001$$n5$$p052001$$tPhysical review letters$$v125$$x1079-7114$$y2020
000889133 8564_ $$uhttps://juser.fz-juelich.de/record/889133/files/PhysRevLett.125.052001.pdf$$yOpenAccess
000889133 8564_ $$uhttps://juser.fz-juelich.de/record/889133/files/file.pdf$$yOpenAccess
000889133 909CO $$ooai:juser.fz-juelich.de:889133$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161563$$aForschungszentrum Jülich$$b8$$kFZJ
000889133 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000889133 9141_ $$y2020
000889133 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32
000889133 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000889133 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-08-32
000889133 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889133 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-32
000889133 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2018$$d2020-08-32
000889133 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2018$$d2020-08-32
000889133 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000889133 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000889133 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000889133 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889133 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2020-08-32
000889133 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-32
000889133 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32
000889133 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-32$$wger
000889133 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-32
000889133 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000889133 920__ $$lyes
000889133 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000889133 980__ $$ajournal
000889133 980__ $$aVDB
000889133 980__ $$aUNRESTRICTED
000889133 980__ $$aI:(DE-Juel1)JSC-20090406
000889133 9801_ $$aFullTexts