000889142 001__ 889142
000889142 005__ 20221117180423.0
000889142 0247_ $$2doi$$a10.1002/mds.28225
000889142 0247_ $$2ISSN$$a0885-3185
000889142 0247_ $$2ISSN$$a1531-8257
000889142 0247_ $$2Handle$$a2128/32249
000889142 0247_ $$2pmid$$a32853481
000889142 0247_ $$2WOS$$aWOS:000562918700001
000889142 037__ $$aFZJ-2021-00067
000889142 041__ $$aEnglish
000889142 082__ $$a610
000889142 1001_ $$0P:(DE-HGF)0$$aGreuel, Andrea$$b0
000889142 245__ $$aGBA Variants in Parkinson's Disease: Clinical, Metabolomic, and Multimodal Neuroimaging Phenotypes
000889142 260__ $$aNew York, NY$$bWiley$$c2020
000889142 3367_ $$2DRIVER$$aarticle
000889142 3367_ $$2DataCite$$aOutput Types/Journal article
000889142 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1667372405_21228
000889142 3367_ $$2BibTeX$$aARTICLE
000889142 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889142 3367_ $$00$$2EndNote$$aJournal Article
000889142 520__ $$aBackground: Alterations in the GBA gene (NM_000157.3) are the most important genetic risk factor for Parkinson's disease (PD). Biallelic GBA mutations cause the lysosomal storage disorder Gaucher's disease. The GBA variants p.E365K and p.T408M are associated with PD but not with Gaucher's disease. The pathophysiological role of these variants needs to be further explored.Objective: This study analyzed clinical, neuropsychological, metabolic, and neuroimaging phenotypes of patients with PD carrying the GBA variants p.E365K and p.T408M.Methods: GBA was sequenced in 56 patients with mid-stage PD. Carriers of GBA variants were compared with noncarriers regarding clinical history and symptoms, neuropsychological features, metabolomics, and multimodal neuroimaging. Blood plasma gas chromatography coupled to mass spectrometry, 6-[18 F]fluoro-L-Dopa positron emission tomography (PET), [18 F]fluorodeoxyglucose PET, and resting-state functional magnetic resonance imaging were performed.Results: Sequence analysis detected 13 heterozygous GBA variant carriers (7 with p.E365K, 6 with p.T408M). One patient carried a GBA mutation (p.N409S) and was excluded. Clinical history and symptoms were not significantly different between groups. Global cognitive performance was lower in variant carriers. Metabolomic group differences were suggestive of more severe PD-related alterations in carriers versus noncarriers. Both PET scans showed signs of a more advanced disease; [18 F]fluorodeoxyglucose PET and functional magnetic resonance imaging showed similarities with Lewy body dementia and PD dementia in carriers.Conclusions: This is the first study to comprehensively assess (neuro-)biological phenotypes of GBA variants in PD. Metabolomics and neuroimaging detected more significant group differences than clinical and behavioral evaluation. These alterations could be promising to monitor effects of disease-modifying treatments targeting glucocerebrosidase metabolism. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
000889142 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000889142 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x1
000889142 588__ $$aDataset connected to CrossRef
000889142 7001_ $$0P:(DE-HGF)0$$aTrezzi, Jean‐Pierre$$b1
000889142 7001_ $$0P:(DE-HGF)0$$aGlaab, Enrico$$b2
000889142 7001_ $$0P:(DE-HGF)0$$aRuppert, Marina C.$$b3
000889142 7001_ $$0P:(DE-HGF)0$$aMaier, Franziska$$b4
000889142 7001_ $$0P:(DE-HGF)0$$aJäger, Christian$$b5
000889142 7001_ $$0P:(DE-HGF)0$$aHodak, Zdenka$$b6
000889142 7001_ $$0P:(DE-HGF)0$$aLohmann, Katja$$b7
000889142 7001_ $$0P:(DE-HGF)0$$aMa, Yilong$$b8
000889142 7001_ $$0P:(DE-HGF)0$$aEidelberg, David$$b9
000889142 7001_ $$0P:(DE-HGF)0$$aTimmermann, Lars$$b10
000889142 7001_ $$0P:(DE-HGF)0$$aHiller, Karsten$$b11
000889142 7001_ $$0P:(DE-HGF)0$$aTittgemeyer, Marc$$b12
000889142 7001_ $$0P:(DE-Juel1)177611$$aDrzezga, Alexander$$b13
000889142 7001_ $$0P:(DE-HGF)0$$aDiederich, Nico$$b14
000889142 7001_ $$0P:(DE-HGF)0$$aEggers, Carsten$$b15$$eCorresponding author
000889142 773__ $$0PERI:(DE-600)2041249-6$$a10.1002/mds.28225$$gVol. 35, no. 12, p. 2201 - 2210$$n12$$p2201 - 2210$$tMovement disorders$$v35$$x1531-8257$$y2020
000889142 8564_ $$uhttps://juser.fz-juelich.de/record/889142/files/Greuel2020_GBA_Variants.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000889142 8564_ $$uhttps://juser.fz-juelich.de/record/889142/files/Greuel2020_GBA_Variants_PostPrint.docx$$yOpenAccess$$zStatID:(DE-HGF)0510
000889142 909CO $$ooai:juser.fz-juelich.de:889142$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889142 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177611$$aForschungszentrum Jülich$$b13$$kFZJ
000889142 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000889142 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x1
000889142 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32
000889142 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000889142 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889142 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-32
000889142 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOVEMENT DISORD : 2018$$d2020-08-32
000889142 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-32$$wger
000889142 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-08-32
000889142 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000889142 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000889142 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889142 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-32
000889142 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMOVEMENT DISORD : 2018$$d2020-08-32
000889142 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32
000889142 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-08-32
000889142 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-32$$wger
000889142 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000889142 920__ $$lyes
000889142 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000889142 980__ $$ajournal
000889142 980__ $$aVDB
000889142 980__ $$aUNRESTRICTED
000889142 980__ $$aI:(DE-Juel1)INM-2-20090406
000889142 9801_ $$aFullTexts